首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
admin
2015-04-30
94
问题
设A为n阶矩阵,对于齐次线性方程(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,则必有
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
C、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
D、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
答案
A
解析
若α是(I)的解,即A
n
α=0,显然A
n+1
α=A(A
n
α)=AO=0,即α必是(Ⅱ)的解.可排除(C)和(D).
若η是(Ⅱ)的解,即A
n+1
η=0.假若η不是(Ⅰ)的解,即A
n
η≠0,那么对于向量组η,Aη,A
2
η,…,A
n
η,一方面这是n+1个n维向量必线性相关;另一方面,若
kη+k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,
用A
n
左乘上式,并把A
n+1
η=0,A
n+2
η=0,…,代入,得kA
n
η=0.
由于A
n
η≠0,必有k=0.对
k
1
Aη+k
2
A
2
η+…+k
n
A
n
η=0,
用A
n-1
左乘上式可推知k
1
=0.
类似可知k
i
=0(i=2,3,…,n).于是向量组η,Aη,A
2
η,…,A
n
η线性无关,两者矛盾.所以必有A
n
η=0,即(Ⅱ)的解必是(Ⅰ)的解.由此可排除(B).故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/CFU4777K
0
考研数学三
相关试题推荐
马克思指出:“在同一时间内,劳动就一种属性来说必然创造价值,就另一种属性来说,必然保存或转移价值。”这说的是
设A,B是同阶正定矩阵,则下列命题错误的是().
设A与B均为n,阶矩阵,且A与B合同,则().
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
利用函数的凹凸性,证明下列不等式:
对于数列(xn)∞n=1,若x2k-1→a(k→∞),x2k→a(k→∞),证明:xn→a(n→∞).
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在一个ξ,使f(ξ)=ξ.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
氧传感器用于检测进气中的氧浓度并反馈给ECU。()
计算机软件有什么特点?
Inanycomprehensiontextyouwillfindwordsthatyoudon’tknow.Youcan【C1】______themupinadictionary,ofcourse,【C2】____
引起垂体瘤短期内迅速增大的最常见原因是
构成比为
下列哪些药物作用于α受体
为了使施工段划分得更科学、更合理,通常应遵循( )原则。
下列属于偷税行为的有()。
长虹公司购入债券时,应作的会计分录为()。12月10日,发放工资时应作的会计分录为()。
幼儿园要树立正确的健康观念,在重视幼儿身体健康的同时,要高度重视幼儿的________。
最新回复
(
0
)