首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P—1AP=A。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P—1AP=A。
admin
2017-01-21
53
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
—1
AP=A。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
),B=[*],则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
—1
AP
1
=B,因此矩阵A与B相似,则 |λE—B|=[*]=(λ—1)
2
(λ—4),矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E—B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(—1,1,0)
T
,β
2
=(—2,0,1)
T
;由(4E—B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)=[*], 得P
2
—1
P
1
—1
BP
2
=[*] 则 P
2
—1
P
1
—1
AP
1
P
2
=[*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(—α
1
+α
2
,—2α
1
+α
3
,α
2
+α
3
)时,有P
—1
AP=Λ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/D2H4777K
0
考研数学三
相关试题推荐
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设A、B为两随机事件,且B∈A,则下列结论中肯定正确的是().
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设n维向量α=(a,0,…,0,a)Ta>0,E为n阶单位矩阵,矩阵A=E-ααT,B=其中A的逆矩阵为B,则a=________.
设矩阵(I)已知A的一个特征值为3,试求y;(Ⅱ)求矩阵P,使(AP)T(AP)为对角矩阵.
设随机变量X服从参数为λ的指数分布,则
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
计算下列各定积分:
设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,YnXi2依概率收敛于=__________。
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x1y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).求L的方程:
随机试题
中国近代史的起点是
天然气发热量高,其热值约为()。
恒牙萌出的生理特点不正确的是
一般腹泻患儿,失水量为体重的9%,四肢稍凉,血钠135mmol/L(135mEq/L),二氧化,碳结合力14mmol/l(14mEq/L)/,第一天补液哪项不正确
工程项目是指具有独立的设计文件和相应的综合概算书,竣工后能独立发挥生产能力或使用效益的工程。()
干式变压器安装,其工程内容包括( )等。
会计中期包括()。
某国对移动通信市场实施放宽准入政策,几年后,共有6家移动运营商进入市场,2005年,按照移动业务收入计算的市场份额排名如表所示,设。[2006年真题]2006年,企业C2收购了企业C6,其他企业市场份额基本不变,则2006年该国移动通信市场的集中度(
下列各项中,不符合作为战略投资者基本要求的是()。
公安机关在社会治安综合治理中的作用表现在加强基层基础工作,坚持()的原则。
最新回复
(
0
)