首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组 (I) 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
设非齐次方程组 (I) 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
admin
2017-07-26
67
问题
设非齐次方程组
(I)
有解,且系数矩阵A的秩r(A)=r<n(b
1
,b
2
,…,b
n
不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
选项
答案
因r(A)=r<n,可设ξ
1
,ξ
2
,…,ξ
n—r
是(I)的对应齐次线性方程组的基础解系,η
*
是(I)的一个特解. 由η
*
不能被ξ
1
,ξ
2
,…,ξ
n—r
线性表示,且ξ
1
,ξ
2
,…,ξ
n—r
线性无关,可知η
*
,ξ
1
,ξ
2
,…,ξ
n—r
线性无关,而方程组(I)的任意一解η都可以表示成η
*
和ξ
1
,ξ
2
,…,ξ
n—r
的线性组合. η=η
*
=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
. 所以(I)的解向量的秩≤n一r+1. 又向量组η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
是(I)的n一r+1个特解,考察 k
0
η
*
+k
1
(η
*
+ξ
1
)+k
2
(η
*
+ξ
2
)+…+k
n—r
(η
*
+ξ
n—r
)=0, 整理得 (k
0
+k
1
+k
2
+…+k
n—r
)η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0. 因η
*
,ξ
1
,ξ
2
,…,ξ
n—r
线性无关,上式成立当且仅当 [*] 即 k
1
=k
2
=…=k
n—r
=k
0
=0. 从而得证η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
线性无关, r(η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
)n一r+1,即方程组(I)至少有n一r+1个线性无关的解向量,即(I)的解向量组的秩≥n一r+1. 综上所述,方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/D5H4777K
0
考研数学三
相关试题推荐
对数曲线y=lnx上哪一点处的曲率半径最小?求出该点处的曲率半径.
[*]
A、 B、 C、 D、 C
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x21-10x22(1)在广告费用不限的情况
设函数f(x),g(x)在区间[0,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:
设某商品的需求函数为Q=160—2P,其中Q,P分别表示需求量和价格,如果该商品需求弹性的绝对值等于1,则商品的价格是().
计算曲线积分:
设线性方程组的系数矩阵为A,三阶矩阵B≠0,且AB=0,试求λ值.
由题设,设原积分中两部分的积分区域分别如右图所示,则原式[*]
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
随机试题
医院感染包括
有关结核冷脓肿,下列哪项是恰当的
活髓切断术,临床用氧化锌丁香油糊剂暂封窝洞,观察时间为
肛周脓肿常见的后遗症是内痔环切术常有的后遗症是
甲股份有限公司(以下简称甲公司)为上市公司,适用的所得税税率为25%。为提高市场占有率及实现多元化经营,甲公司从2015年开始进行了一系列投资和资本运作。有关资料如下。(1)甲公司于2015年1月1日,以900万元银行存款取得乙公司20%的普通股份,
根据《中华人民共和国民事诉讼法》的规定,下列法院中,对因保险合同纠纷引起的诉讼有管辖权的有()。
规定英国建立地方教育当局,且地方当局有权建立中等学校,并资助文法学校,向进入文法学校的初等学校的毕业生提供奖学金的教育法案是
办公信息系统模型是对各类办公信息系统的一种概括和描述。按Neuman的观点,办公信息系统模型可分为这样五类()。
Itisoutofthequestionthattheinspectorwillcometomorrow.
A、Theapplicantsmustconfirmtheapplicationinperson.B、Theapplicantscanapplyitatanytimetheywant.C、Theapplicantsc
最新回复
(
0
)