首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组 (I) 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
设非齐次方程组 (I) 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
admin
2017-07-26
49
问题
设非齐次方程组
(I)
有解,且系数矩阵A的秩r(A)=r<n(b
1
,b
2
,…,b
n
不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
选项
答案
因r(A)=r<n,可设ξ
1
,ξ
2
,…,ξ
n—r
是(I)的对应齐次线性方程组的基础解系,η
*
是(I)的一个特解. 由η
*
不能被ξ
1
,ξ
2
,…,ξ
n—r
线性表示,且ξ
1
,ξ
2
,…,ξ
n—r
线性无关,可知η
*
,ξ
1
,ξ
2
,…,ξ
n—r
线性无关,而方程组(I)的任意一解η都可以表示成η
*
和ξ
1
,ξ
2
,…,ξ
n—r
的线性组合. η=η
*
=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
. 所以(I)的解向量的秩≤n一r+1. 又向量组η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
是(I)的n一r+1个特解,考察 k
0
η
*
+k
1
(η
*
+ξ
1
)+k
2
(η
*
+ξ
2
)+…+k
n—r
(η
*
+ξ
n—r
)=0, 整理得 (k
0
+k
1
+k
2
+…+k
n—r
)η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0. 因η
*
,ξ
1
,ξ
2
,…,ξ
n—r
线性无关,上式成立当且仅当 [*] 即 k
1
=k
2
=…=k
n—r
=k
0
=0. 从而得证η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
线性无关, r(η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
)n一r+1,即方程组(I)至少有n一r+1个线性无关的解向量,即(I)的解向量组的秩≥n一r+1. 综上所述,方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/D5H4777K
0
考研数学三
相关试题推荐
[*]
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则fˊ(0)=().
[*]
向量组α1,α2,…,αm线性无关的充分必要条件是________.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为a。试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设随机变量x的概率密度函数为f(x)=,以Y表示对X进行三次独立重复观察中事件{X≤1/2)出现的次数,则P{Y=2}=________.
计算二重积分,其中D是由直线x=-2,y=0,y=2以及曲线所围成的平面区域.
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
求∫013x2arcsinxdx.
随机试题
如何培养学前儿童的能力?
Thisgroupofpeoplebecamegreattraders,barteringjewelry,pottery,animalpelts,tools,andothergoodsthroughextensivetr
在整个领导工作中占有重要地位,发挥重要作用的是_____。
为增加管套的散热速度,机器本身常用的方法不包括
关于有限合伙人与普通合伙人的相互转变,下列表述正确的是()。
下列情形中,( )的诉讼时效为一年。
李先生今年35岁,是某大学一名教师,他计划65岁时退休。为了在退休后仍然能够保持生活水平不变,李先生决定请理财师为其进行退休规划。综合考虑各种因素,李先生的退休规划要求如下:①预计李先生退休后每年需要生活费11.5万元;②按照经验寿命依据和李先生具体情
按照公司信贷产品的市场规模、产品类型、技术手段等因素划分,定位方式分别为()。
桂林三花酒属于清香型白酒的代表。()
下列对常用电器节电的说法不成立的是:
最新回复
(
0
)