首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组 (I) 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
设非齐次方程组 (I) 有解,且系数矩阵A的秩r(A)=r<n(b1,b2,…,bn不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
admin
2017-07-26
70
问题
设非齐次方程组
(I)
有解,且系数矩阵A的秩r(A)=r<n(b
1
,b
2
,…,b
n
不全为零).证明:方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
选项
答案
因r(A)=r<n,可设ξ
1
,ξ
2
,…,ξ
n—r
是(I)的对应齐次线性方程组的基础解系,η
*
是(I)的一个特解. 由η
*
不能被ξ
1
,ξ
2
,…,ξ
n—r
线性表示,且ξ
1
,ξ
2
,…,ξ
n—r
线性无关,可知η
*
,ξ
1
,ξ
2
,…,ξ
n—r
线性无关,而方程组(I)的任意一解η都可以表示成η
*
和ξ
1
,ξ
2
,…,ξ
n—r
的线性组合. η=η
*
=η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
. 所以(I)的解向量的秩≤n一r+1. 又向量组η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
是(I)的n一r+1个特解,考察 k
0
η
*
+k
1
(η
*
+ξ
1
)+k
2
(η
*
+ξ
2
)+…+k
n—r
(η
*
+ξ
n—r
)=0, 整理得 (k
0
+k
1
+k
2
+…+k
n—r
)η
*
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0. 因η
*
,ξ
1
,ξ
2
,…,ξ
n—r
线性无关,上式成立当且仅当 [*] 即 k
1
=k
2
=…=k
n—r
=k
0
=0. 从而得证η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
线性无关, r(η
*
,η
*
+ξ
1
,η
*
+ξ
2
,…,η
*
+ξ
n—r
)n一r+1,即方程组(I)至少有n一r+1个线性无关的解向量,即(I)的解向量组的秩≥n一r+1. 综上所述,方程组(I)的所有解向量中线性无关的最大个数恰为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/D5H4777K
0
考研数学三
相关试题推荐
已知曲线y=x3一3a2x+b与x轴相切,则b2可以通过a表示为b2=_____.
求曲线x3+y3-3xy=0在点处的切线方程和法线方程.
设A为m阶方阵,B为n阶方阵,且|A|=a,|B|=b,C=,则|C|=________.
[*]
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x21-10x22(1)在广告费用不限的情况
设n阶矩阵A与B等价,则必有().
设随机变量X的概率密度为F(x)是X的分布函数.求随机变量Y=F(X)的分布函数.
12个乒乓球中有9个新球,3个旧球.第一次比赛,取出3个球,用完以后放回去,第二次比赛又从中取出3个球.(1)求第二次取出的3个球中有2个新球的概率;(2)若第二次取出的3个球中有2个新球,求第一次取到的3个球中恰有1个新球的概率.
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设A为n阶矩阵,对于齐次线性方程(Ⅰ)Anx=0和(Ⅱ)An+1x=0,则必有
随机试题
人民警察使用武器造成人员伤亡的,应当立即向其所属公安机关报告,也可以向当地公安机关报告。
下列脂肪降解和氧化产物可以转化为糖的有
久病患者。纳食减少,疲乏无力,腹部胀满。但时有缓减,腹痛而喜按,舌胖嫩而苔润,脉细弱而无力。其病机是
疼痛的发作方式属于病史中的
从发展战略到对城市的开发控制,要经过一系列的环节,实施性发展规划才是控制城市开发直接依据。属于实施性发展规划的有:
下列选项中,属于宏观调控权的有()。
2001年7月,北京某国内旅行社组织接待了从外地来北京旅游的一个的团队,在参观游览过程中,作为地陪的高某为了节省时间并增加计划以外的游览项目,私自减少了两个计划景点,并一再对客人说,大家到北京来一次不容易,既然来了就应多看一些景点。在征得大多数客人同意并对
A.尿比重明显增加B.尿量明显减少C.两者都有D.两者都无一次饮0.9%盐水1000ml,可导致
村民李某,为了泄愤报复,多次破坏武装部队的军事飞机场的灯塔。由于被及时发现并抢修,并没有造成严重后果。对李某的行为应认定为()。
个体提高自我价值的过程,就是
最新回复
(
0
)