首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
admin
2019-12-26
57
问题
已知二次型
f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+4x
1
x
2
-4x
1
x
3
+8x
2
x
3
.
用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
选项
答案
矩阵A的特征多项式为 [*] 由此得矩阵A的特征值为λ
1
=1,λ
2
=6,λ
3
=-6. 于是,二次型f可通过正交变换x=Qy化为标准形 f=y
1
2
+6y
2
2
-6y
3
2
. 对于特征值λ
1
=1,由于 [*] 故对应于特征值λ
1
=1的特征向量可取为ξ
1
=(2,0,-1)
T
. 类似地,对应于特征值λ
2
=6,λ
3
=-6的特征向量可分别取为ξ
2
=(1,5,2)
T
,ξ
3
=(1,-1,2)
T
. 因为A是实对称矩阵,且λ
1
,λ
2
,λ
3
互异,故x
1
,x
2
,x
3
构成正交向量组,将其单位化得 [*] 于是,所求的正交矩阵为 [*] 故对二次型f作正交变换 [*] 则可将f化为标准形f=y
1
2
+6y
2
2
-6y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/DJD4777K
0
考研数学三
相关试题推荐
设A是n阶可逆阵,其每行元素之和都等于常数a.证明:(1)a≠0;(2)A-1的每行元素之和均为
已知幂级数anxn在x=1处条件收敛,则幂级数an(x一1)n的收敛半径为________。
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
设总体X的概率密度为其中0<θ<1是未知参数,c是常数.X1,X2,…,Xn为来自总体X的简单随机样本,则c=_____;θ的矩估计量=_____.
(I)设f(x连续,证明(Ⅱ)求
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,则________.
计算二重积分其中D是由直线y=x,y=1,x=0所围成的平面区域.
计算曲线积分:,L为球面x2+y2+z2=a2与平面x=y相交的圆周.
已知=2x+y+1,=x+2y+3,u(0,0)=1,求u(x,y)及u(x,y)的极值,并问此极值是极大值还是极小值?说明理由。
设α=[1,0,1]T,A=ααT,n是正数,则|aE一An|=________.
随机试题
简述常见的公共问题提出主体。
下列哪些激素可与核受体结合而调节转录过程
下列病证除哪项外,均可用防风治疗
患者,男,51岁。患胃癌2年。现症见脘痛剧烈,痛处固定,拒按,上腹肿块,肌肤甲错,眼眶黯黑,舌质紫暗,舌下脉络紫胀,脉弦涩。实验室检查:大便隐血试验示弱阳性。自服三七粉止血。治疗应首选
2014年1月1日,甲公司以1800万元自非关联方购人乙公司100%有表决权的股份,取得对乙公司的控制权;乙公司当日可辨认净资产的账面价值和公允价值均为1500万元。2015年度,乙公司以当年1月1日可辨认资产公允价值为基础计算实现的净利润为125万元
China’stradesurpluswiththeUSaccountedfor73percentofitstotalsurpluslastyear,butChinahadatrade______withother
京剧演员(),工武生,有“武生宗师”之盛誉。
宽带ISDN的协议分为几个面和几个层?()
UnpopularSubjects?Isthereaplaceintoday’ssocietyforthestudyofuselesssubjectsinouruniversities?Justover100yea
James:How’sKellydoing?Joan:______
最新回复
(
0
)