首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题中, (1)如果矩阵AB=E,则A可逆且A-1=B. (2)如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E. (3)如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆. (4)如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆. 正确的是(
下列命题中, (1)如果矩阵AB=E,则A可逆且A-1=B. (2)如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E. (3)如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆. (4)如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆. 正确的是(
admin
2016-05-31
68
问题
下列命题中,
(1)如果矩阵AB=E,则A可逆且A
-1
=B.
(2)如果n阶矩阵A,B满足(AB)
2
=E,则(BA)
2
=E.
(3)如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆.
(4)如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆.
正确的是( )
选项
A、(1)(2)
B、(1)(4)
C、(2)(3)
D、(2)(4)
答案
D
解析
如果A、B均为n阶矩阵,命题(1)当然正确,但是题中没有n阶矩阵这一条件,故(1)不正确.例如
显然A不可逆.
若A、B为n阶矩阵,(AB)
2
=E,即(AB)(AB)=E,则可知A、B均可逆,
于是ABA=B
-1
,从而BABA=E.即(BA)
2
=E.因此(2)正确.
若设
显然A、B都不可逆,但A+B=
可逆,可知(3)不正确.
由于A、B均为n阶不可逆矩阵,知|A|=|B|=0,且结合行列式乘法公式,有|AB|=
|A||B|=0,故AB必不可逆.(4)正确.
所以应选D.
转载请注明原文地址:https://kaotiyun.com/show/DLT4777K
0
考研数学三
相关试题推荐
中国研究人员日前在美国《分子植物》杂志上报告,他们破译了世界三大饮料植物之一茶树的基因组。报告提出,高含量的茶多酚和咖啡因决定了山茶属植物是否适合制茶。该结论回答了为什么只有茶组植物的叶子适合制茶,而茶花、油茶和金花茶等非茶组植物的叶片不适合制茶这一长期悬
设A,B是同阶正定矩阵,则下列命题错误的是().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
设函数y=f(x)有三阶连续导数,其图形如图29所示,其中l1与l2分别是曲线在点(0,0)与(3,2)处的切线.试求积分
若三阶常系数齐次线性微分方程有特解y1=e-x,y2=2xe-x及y3=3ex,则该微分方程是().
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
(2021年临沂)认为学习成绩差的学生品行也不好,这是一种()
患儿4岁,患室间隔缺损,病情较重,平时需用地高辛维持心功能。现患儿因上呼吸道感染后诱发急性心力衰竭,按医嘱用西地兰,患儿出现恶心,呕吐,视力模糊。上述临床表现的原因是
关于桥梁墩台施工的说法,正确的是()。
某省属重点水利工程项目计划于2004年12月28日开工,由于坝肩施工标段工程复杂,技术难度高,一般施工队伍难以胜任,业主自行决定采取邀请招标方式。于2004年9月8日向通过资格预审的A、B、C、D、E五家施工承包企业发出了投标邀请书。该五家企业均接受了邀请
票据的功能包括()。
下列有关特别风险相关的内部控制的说法中,错误的是()。
著名教育心理学家桑代克是从哪个角度建立自己的教育心理学体系?()
中国政府对台不承诺放弃使用武力,针对的是()
为了使模块尽可能独立,要求()。
若有定义语句:doublea,*p=&a;以下叙述中错误的是()。
最新回复
(
0
)