首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
admin
2016-10-21
58
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
(1)存在可逆矩阵P,使得P
T
AP,P
T
BP都是对角矩阵;
(2)当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
(1)因为A正定,所以存在实可逆矩阵P
1
,使得p
1
T
AP
1
=E.作B
1
=P
1
T
BP
1
,则B
1
仍是实对称矩阵,从而存在正交矩阵Q,使得Q
T
B
1
Q是对角矩阵.令P=P
1
Q,则 P
T
AP=Q
T
P
1
T
AP
1
Q=E,P
T
BP=Q
T
P
1
T
BP
1
Q=Q
T
B
1
Q.因此P即所求. (2)设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
3
,…,λ
n
,记 M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/DXt4777K
0
考研数学二
相关试题推荐
已知是函数f(x)的一个原函数,求∫x3f’(x)dx。
计算∫e2xcosexdx。
验证函数在-1≤x≤1上是否满足拉格朗日定理,如满足,求出满足定理的中值ε。
求下列的不定积分。∫3xexdx
求下列的不定积分。
交换积分次序:∫-10dy∫21-yf(x,y)dx=________。
已知一抛物线通过x轴上的两点A(1,0),B(3,0).计算上述两个平面图形绕x轴旋转一周所产生的两个旋转体体积之比。
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内存在与第二小题中ξ相异的点η,使得f’(η)(b2-a2)=∫abf(x)dx。
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为________。
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=1/2x2,求曲线C2的方程.
随机试题
靶向给药系统是指
案情:天籁文化公司是北京市朝阳区一间200平方米的商品房(H路6楼101室)的产权人。新月公司认为天籁文化公司侵犯了自己的商业秘密并造成巨大损失,准备诉讼维权。为避免天籁文化公司的侵权范围继续扩散,同时也为了避免天籁文化公司转移资产,在起诉前,新月公司于2
仲裁作为解决纠纷的一种途径,应当采取的方式是()。
证券公司从事介绍业务,应当与期货公司签订书面委托协议,该委托协议应当载明的事项包括()。
专题讲座法的优点不包括()。
(一)张某为光华公司的一名员工,该公司长期拖欠张某工资,在一次索要拖欠工资的过程中,张某与该公司的法定代表人李某发生争吵,且双方发生肢体冲突。张某为了平复心中怒气,唆使好朋友王某16岁的儿子王小某将光华公司某办公室的办公用品砸坏,并承诺事成之后送
描述数据通信的基本技术参数是【 】与误码率。
Itisdifficulttoimaginewhatlifewouldbelikewithoutmemory.Themeaningsofthousandsofeverydayperceptions,thebases
A、Twothousandfeet.B、Twelvethousandfeet.C、Twentythousandfeet.D、Twenty-twothousandfeet.A
LanguageandHumanityLanguageispowerfulanditcanhelpusdoorgetthingsaswewish.LanguageasaborntraitLanguage
最新回复
(
0
)