首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)可导且(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设函数f(x)可导且(k>0),对任意的xn,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
admin
2018-05-25
27
问题
设函数f(x)可导且
(k>0),对任意的x
n
,作x
n+1
=f(x
n
)(n=0,1,2,…),证明:
存在且满足方程f(x)=x.
选项
答案
x
n+1
-x
n
=f(x
n
)-f(x
n-1
)=f’(ξ
n
)(x
n
-x
n-1
),因为f’(x)≥0,所以x
n+1
- x
n
与x
n
-x
n-1
同号,故{X
n
}单调. |x
n
|=|f(x
n-1
)|=|f(x
n
)+∫
x
n
x
n-1
f’(x)dx| ≤|f(x
n
)|+|∫
x
n
x
n-1
f’(x)dx|≤|f(x
n
)|+∫
-∞
∞
[*] dx=|f(x
n
)|+πk,即{x
n
}有界,于是[*]存在,根据f(x)的可导性得f(x)处处连续,等式x
n+1
=f(x
n
)两边令n→∞,得 [*] 原命题得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/DbW4777K
0
考研数学三
相关试题推荐
设X与Y为具有二阶矩的随机变量,且设Q(a,b)=E[y-(a+bX)]2,求a,b使Q(a,b)达到最小值Qmin,并证明:
设随机变量x与y相互独立,且都服从参数为1的指数分布,则随机变量Z=的概率密度为________.
设向量组α1=[a11,a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设Am×n,r(A)=m,Bn×(n-m),r(B)=n-m,且满足关系AB=O.证明:若η是齐次线性方程组AX=0的解,则必存在唯一的ξ,使得Bξ=η.
已知线性方程(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1)亏损的概率α;(2)一年获利润不少于40000元的概率β;(
证明:若三事件A,B,C相互独立,则A∪B及A-B都与C独立.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
证明曲线上任一点的切线的横截距与纵截距之和为2.
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
随机试题
下列现象中属于责任竞合的有()
由桑叶、杏仁、人参、石膏、甘草、胡麻仁、阿胶、麦门冬、枇杷叶组成的方剂是()(2000年第44题)
诊断成人腰椎结核最可靠的依据是
A.高盐饮食B.低蛋白饮食C.高蛋白高糖饮食D.低盐优质蛋白饮食E.高脂饮食关于肾病综合征患者的饮食,说法正确的是
患者,女,53岁。咳嗽月余,加重l周,咳引胸胁疼痛,痰少而稠,面赤咽干,舌苔黄少津,脉弦数。治疗应首选()
建筑物基础的埋置深度应()。
某企业采用“一次摊销法”对低值易耗品进行摊销,本月企业领用库存新的低值易耗品一批,成本为1100元,则本月应摊销()。
领队证的有效期为()年。凡需要在领队证有效期届满后继续从事领队业务的,应当在届满前()个月由组团社向旅游行政管理部门申请登记换发领队证。
(1)签署成交确认书(2)拍卖师主槌(3)交付价款(4)交付拍卖保证金(5)竞买人登记
Whatistheprofessor’sopinionofthelunardynamotheory?
最新回复
(
0
)