首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,满足A2=A,且r(A)=r(0≤r≤n).证明: 其中Er是r阶单位阵.
设A是n阶矩阵,满足A2=A,且r(A)=r(0≤r≤n).证明: 其中Er是r阶单位阵.
admin
2016-09-19
34
问题
设A是n阶矩阵,满足A
2
=A,且r(A)=r(0≤r≤n).证明:
其中E
r
是r阶单位阵.
选项
答案
A
2
=A,A的特征值取值为1,0,由A-A
2
=A(E-A)=O知 r(A)+r(E-A)≤n, r(A)+r(E-A)≥r(A+E-A)=r(E)=n, 故,r(A)+r(E-A)=n,r(A)=r,从而r(E-A)=n-r. 对λ=1,(E-A)X=0,因r(E-A)=n-r,故有r个线性无关特征向量,设为ξ
1
,ξ
2
,…,ξ
r
; 对λ=0,(0E-A)X=0,即AX=0,因r(A)=r,有n-r个线性无关特征向量,设为ξ
r+1
,ξ
r+2
,…,ξ
n
. 故存在可逆阵 P=[ξ
1
,ξ
2
,…,ξ
n
], 使得P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BkT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
一袋中装有a个黑球,b个白球.先后两次从袋中各取一球(不放回).(1)已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;(2)已知第二次取出的是黑球,求第一次取出的也是黑球的概率;(3)已知取出的两个球中有一个是黑球,求另
如果n个事件A1,A2,…,An相互独立,证明:
证明[*]
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
已知一个长办形的长l以2cm/s的速率增加,宽ω以3cm/s的速率增加,则当l=12cm,ω=5cm时,它的对角线增加的速率为_________.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β不能由α1,α2,α3线性表示;
随机试题
三相流环空找水时,体积流量采取涡轮流量计集流点测方式取得,这与两相流的流量测量是不一样的。()
胸主动脉瘤的病因有哪些?
A、甘露醇B、脂肪乳C、地塞米松D、普通氨基酸E、呋噻米急性肾功能衰竭不用______。
患者,男性,35岁。工地施工人员,下工前骨盆被重物挤压入院。查体:BP90/50mmHg,P120次/min,面色苍白,下腹部有压痛。Hb110g/L。X线示髂骨线性骨折。经补液治疗,生命体征平稳,但仍无尿,留置尿管仅有50ml尿液流出,淡红色。全腹
患者,男,31岁。头痛、咽痛2天,出现心烦郁闷,躁扰不宁,夜不能寐,小便黄,舌尖红,脉数。宜用
按企业会计制度及其资产的流动性分类,资产可以分为( )。
标点使用全部恰当的一句是:
Onafivetothreevote,theSupremeCourtknockedoutmuchofArizona’simmigrationlawMonday—amodestpolicyvictoryforthe
C++语言中的多态性分为编译时的多态性和______时的多态性。
Itwasnotmuchfuntotravelononeoftheoldsailingships.Lifewashardforbothpassengersandcrew.17thcenturysailing
最新回复
(
0
)