首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2对应的特征向量是ξ3. 证明:任意3维非零向量β都是A2的特征向量,并求对应的特征值.
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2对应的特征向量是ξ3. 证明:任意3维非零向量β都是A2的特征向量,并求对应的特征值.
admin
2018-07-26
906
问题
A是3阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,λ
3
=-2对应的特征向量是ξ
3
.
证明:任意3维非零向量β都是A
2
的特征向量,并求对应的特征值.
选项
答案
因A有特征值λ
1
=λ
2
=2,λ
3
=一2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
,ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E, 从而对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量
解析
转载请注明原文地址:https://kaotiyun.com/show/Dyg4777K
0
考研数学一
相关试题推荐
设常数a∈[0,1],随机变量X~U[0,1],Y=|X一a|,则E(XY)=___________.
设f(x)=处处可导,确定常数a,b,并求f’(x).
设f(x)在[0,1]上二阶连续可导且f(0)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤.
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
求积分I=dy,其中C:y=1,x=4,y=逆时针一周.
设A是n阶正定矩阵,α1,α2,…,αm是n维非零列向量,且Aαj=0(i≠j),证明α1,α2,…,αm线性无关.
若α1,α2,α3,β1,β2都是四维列向量,且四阶行列式|α1,α2,α3,β1|=m,|β2,α1,α2,α3|=n则四阶行列式|α3,α2,α1,β1+β2|等于().
设随机变量X服从参数为λ>0的泊松分布,随机变量Y在0到X之间任取一个非负整数,试求概率P(Y=2).
设函数f(u)可导,y=f(x2)。当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
随机试题
提托穴的定位是()。
患者,女性,39岁,近半年来,每于感染或劳累后出现劳力性呼吸困难,并逐渐加重,休息后也不易缓解,一周前受凉后出现呼吸困难,伴咳嗽,咳大量泡沫样痰,夜间不能平卧,以“慢性心功能不全,二尖瓣狭窄”收入院。患者既往曾有反复链球菌性咽炎史。该患者心脏瓣膜病最可
月经周期的长短取决于下列何项因素
具有抗尿崩症作用的药物是
基金收益扣除按照国家规定可以扣除的费用等项目后的余额称为()。
某市区酒厂为增值税一般纳税人,2019年10月发生如下经济业务:(1)向某商场销售自产粮食白酒15吨,每吨不含税单价为80000元,收取包装物押金174000元,收取品牌使用费18100元。(2)从云南某酒厂购进粮食白酒6吨,专用发票上注明每吨不含税进
【2014广西】研究性学习既是一门课程,又是一种学习方式。()
LSAT
Inadditiontourgetoconformwhichwegenerateourselves,thereistheexternalpressureofthevariousformalandinformalgr
Itisnotpolitetoarriveatadinnerpartymorethan15to20minuteslate.Thehostorhostessusuallywaitsforallthegues
最新回复
(
0
)