首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2对应的特征向量是ξ3. 证明:任意3维非零向量β都是A2的特征向量,并求对应的特征值.
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=-2对应的特征向量是ξ3. 证明:任意3维非零向量β都是A2的特征向量,并求对应的特征值.
admin
2018-07-26
894
问题
A是3阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,λ
3
=-2对应的特征向量是ξ
3
.
证明:任意3维非零向量β都是A
2
的特征向量,并求对应的特征值.
选项
答案
因A有特征值λ
1
=λ
2
=2,λ
3
=一2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
,ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E, 从而对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量
解析
转载请注明原文地址:https://kaotiyun.com/show/Dyg4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2).使得。
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)一f(ξ)=f(2)一2f(1).
设f(x)在[1,2]上连续,在(1,2)内可导,且f(x)≠0(1<x<2),又存在,证明:(1)存在ξ∈(1,2),使得。(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ一1)f’(η)ln2.
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.(1)甲、乙两人同时向目标射击,求目标被命中的概率;(2)甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设随机变量X的概率密度为fX(x)=(一∞<x<+∞),Y=X2的概率密度为___________.
设空间曲线C由立体0≤z≤1,0≤y≤1,0≤2≤1的表面与平面x+y+z=所截而成,计算|∮C(z2—y2)dx+(x2一z2)dy+(y2—x2)dz|.
设直线L:.(1)求直线绕z轴旋转所得的旋转曲面,(2)求该旋转曲面介于z=0与z=1之间的几何体的体积.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X一3Y的相关系数.
已知二次型f(x1,x2,x3)=+2ax1x2+2x1x3经正交变换化为标准形,则a=____________.
随机试题
肝病患者应用氯霉素治疗应慎重是因其患者合并有
北方某地新建的综合楼内设有集中空调系统,在地下一层制冷站内设螺杆式冷水机、热交换器、冷冻水泵和冷却水泵等设备,楼上会议室设定风量空调系统,办公室设变风量空调系统。请回答下列问题。在冬季,为保证空调机组内供、回水盘管的安全使用,通常会采用下列哪一项措施
甲公司为境内上市公司,2×16年3月10日为筹集生产线建设资金,通过定向增发本公司股票募集资金30000万元。生产线建造工程于2×16年4月1日开工,至2×16年10月31日,募集资金已全部投入。为补充资金缺口,11月1日,甲公司以一般借款(甲公司仅有一笔
中国物业管理协会制定的《普通住宅小区物业管理服务等级标准(试行)》,各等级服务由()个方面内容组成。
关于动机水平与学习效率的关系的正确陈述是()
公民小朱年满16周岁,并以自己的劳动收入为主要生活来源,可以视为()。
公文办理主要分为()。
每年12月25日的()是基督教世界最重大的节日。
12名同学分别到3个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()种.
以下关于指针的叙述正确是()。
最新回复
(
0
)