首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
在“一元二次方程根与系数的关系”一课上,某教师设计如下的教学过程: 一、探究规律 先填空,再找规律: 思考:观察表中x1+x2与x1x2的值,它们与前面的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律? 二、得出定理并证明(韦
在“一元二次方程根与系数的关系”一课上,某教师设计如下的教学过程: 一、探究规律 先填空,再找规律: 思考:观察表中x1+x2与x1x2的值,它们与前面的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律? 二、得出定理并证明(韦
admin
2017-09-18
65
问题
在“一元二次方程根与系数的关系”一课上,某教师设计如下的教学过程:
一、探究规律
先填空,再找规律:
思考:观察表中x
1
+x
2
与x
1
x
2
的值,它们与前面的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?
二、得出定理并证明(韦达定理)
若一元二次方程ax
2
+bx+c=0(a≠0)的两根为x
1
、x
2
,则
分析该教师设计这两个环节的意图。
选项
答案
探究规律环节的设计意图:通过学生计算一些特殊的一元二次方程的两根之和与两根之积,启发学生从中发现存在的一般规律,渗透特殊到一般的思想方法。 得出定理并证明环节的设计意图:让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。
解析
转载请注明原文地址:https://kaotiyun.com/show/ECtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
概括地说,全日制义务教育思想品德课程的基本理念就是()。①初中学生逐步扩展的生活是本课程构建的基础②帮助学生做负责任的公民、过积极健康的生活是本课程的追求③坚持正确价值观念的引导与启发学生独立思考、积极实践相统一是本课程遵
“权利的真正源泉在于义务。”对这句话理解正确的是()。
精准扶贫是指针对不同贫困区域环境、不同贫困农户状况,运用科学有效的程序对扶贫对象实施精确识别、精确帮扶、精确管理的治贫方式。精准扶贫贵在“精准”,这意味着开展该项工作要()。①保障贫困群体的权益,给予无差别补贴②具体分析致贫原因,找
《义务教育思想品德课程标准(2011年版)》对教师的教学提出了一些建议,下列属于教学建议的有()。①创造性使用教材,优化教学过程②注重学生的情感体验和道德实践③采用知识性考试作为评价的唯一方式④强调与生活实际及其
某教师在《发现我的生命》教学中,以“独特的我”为话题,让学生即兴演讲,引导学生认识到在外貌、性格、兴趣等方面,人与人是不同的,世界上没有两个完全相同的人。该教师运用的教学方法是()。
城乡一体化有利于创造经济的最大增长空间,拉动农牧区居民的消费需求和投资要求,避免“农村病”和“城市病”,保障经济社会的可持续发展。由此可见,推动城乡发展一体化是()。①我国有效扩大内需的根本方略②提高生产力和综合国力的战略支撑
“青年兴则国家兴,青年强则国家强。”“广大青年要坚定理想信念,志存高远,脚踏实地,勇做时代的弄潮儿,在实现中国梦的生动实践中放飞青春梦想。”材料对广大青年的启示是()。①在价值选择的基础上作出正确的价值判断②充分利用社会提供的客观条件实现人生目
霍金说:“随着量子力学的发现,我们认识到,由于总存在一定程度的不确定性,不可能去完全精确地预言事件”“我们的目的只在于套定律,这些定律能使我们在不确定性原理的极限内预言事件。”对此,正确的理解是()。
若函数f(x)在[a,b]上连续,在(a,b)内可导,且x∈(a,b)时f(x)>0,又f(a)<0,则()。
极限的值是()。
随机试题
财务公司
减小运动模糊的最有效方法是
A.下肢外侧后缘B.上肢内侧中线C.下肢外侧前缘D.上肢外侧中线E.上肢内侧后缘患者疼痛沿三焦经放散,其病变部位在()
患者,女,30岁。右侧牙痛5天.龈肿,痛剧,伴口臭,口渴,大便5日未行.舌苔黄,脉洪。治疗除取颊车、下关穴外.还应加
滑模施工时,当底层混凝土强度达到()时,才可继续提升。
相关系数在0.3~0.4之间,称为()。
教材编写、教学、评估和考试命题的依据是()
张某因逆行驾驶被交通警察李某拦截,李某口头作出罚款200元的处罚决定,并要求当场缴纳。张某要求出具书面处罚决定和罚款收据,李某认为其要求属于强词夺理,拒绝听取其申辩。关于该处罚决定,下列哪项说法是正确的?()
EgyptianwinehasanextensivehistorywithinthehistoryofEgypfiancivilization.Grapeswerenot【C1】______tothelandscapeof
Whatisthistalkabout?
最新回复
(
0
)