首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某个系统由5个相同的元件按如图3-1所示的方式联接而成,各元件的工作状态相互独立,而且每个元件的正常工作时间服从参数为λ>0的指数分布,试求系统正常工作时间T的概率分布.
设某个系统由5个相同的元件按如图3-1所示的方式联接而成,各元件的工作状态相互独立,而且每个元件的正常工作时间服从参数为λ>0的指数分布,试求系统正常工作时间T的概率分布.
admin
2017-06-12
16
问题
设某个系统由5个相同的元件按如图3-1所示的方式联接而成,各元件的工作状态相互独立,而且每个元件的正常工作时间服从参数为λ>0的指数分布,试求系统正常工作时间T的概率分布.
选项
答案
设T
I
表示第i个元件的正常工作时间,i=1,2,…,5,则T的分布函数为 [*] 且T
1
,T
2
,…,T
5
相互独立. 由全概率公式得T的分布函数为 F
T
(t)=P(T≤t) =P(T≤t|T
3
≤t)P(T
3
≤t)+P(T≤t|T
3
>t)P(T
3
>t) =P{[(T
1
≤t)∪(T
2
≤t)]∩[(T
4
≤t)∪(T
5
≤t)]}P(T
3
≤t) +P{[(T
1
≤t)∩(T
2
≤t)]∪[(T
4
≤t)∩(T
5
≤t)]}P(T
3
>t) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/EZu4777K
0
考研数学一
相关试题推荐
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一一个基础解系,则A*x=0的基础解系可为
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设(t为参数),则=_________;
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
随机试题
胆囊结石声像图的描述,哪一项是错误的:
肝素不具有以下何种作用
不属于我国现行的城市规划体系包括的内容是()。
在会计核算的基本前提中,持续经营是企业会计处理方法和程序的基本前提,也是企业会计处理方法和程序保持稳定的基本前提。在借贷记账法下,账户的借方登记()。
政府预算的调控作用主要表现在()。
根据营业税法律制度的规定,下列各项中,应当征收营业税的是()。
采用相关分析法检验多名评定者评定的一致性,组内相关系数达到()以上即可接受。
“全面发展”不是全面平庸,而是“平均发展”,真正的“全面发展”所追求的还有个性和卓越。()
Theeyeofthehurricaneis______.WhichofthefollowingisNOTamethodofprotectingone’shousefromahurricane?______.
已知A是3×4矩阵,秩r(A)=1,若α1=(1,2,0,2)T,α2=(1,-1,a,5)T,α3=(2,a,-3,-5)T,α4=(-1,-1,1,a)T线性相关,且可以表示齐次方程组Aχ=0的任一解,求Aχ=0的基础解系.
最新回复
(
0
)