首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求: 二次型XTAX的标准形;
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求: 二次型XTAX的标准形;
admin
2016-10-24
37
问题
设n阶实对称矩阵A的秩为r,且满足A
2
=A(A称为幂等阵).求:
二次型X
T
AX的标准形;
选项
答案
因为A
2
=A,所以|A||E一A|=0,即A的特征值为0或者1, 因为A为实对称矩阵,所以A可对角化,由r(A)=r得A的特征值为λ=1(r重),λ=0(n一r重),则二次型X
T
AX的标准形为y
1
2
+y
2
2
+…+y
r
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/EbH4777K
0
考研数学三
相关试题推荐
将下列函数展开成x的幂级数并指出展开式成立的区间:(1)sinhx;(2)ln(2+x);;(3)sin2x;(7)(1+x)e-x;(8)arcsinx.
求密度为常数μ的均匀半球壳的质点坐标及对于z轴的转动惯量.
在区间[1,e]上求一点ε,使得如图30所示的阴影部分的面积为最小.
设u(x,y),v(x,y)都是C(1)类函数,证明:
计算,其中f(x,y,z)为连续函数,∑为平面x-y+z=1在第四卦限部分的上侧.
求下列参数方程给出的曲面的面积:(1)x=ucosv,y=usinv,z=v,0≤u≤1,0≤v≤π;(2)x=uv,y=u+v,z=u-v,u2+v2≤1
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________.
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
设∑是空间区域Ω的光滑边界曲面,n为∑上动点(x,y,z)处的外法向单位向量,(x,yo,zo)是∑上一定点,r={x=xo,y-yo,z-zo},r=|r|
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
随机试题
A.吊销执业证书B.予以取缔C.给予警告D.追究刑事责任E.承担赔偿责任
如图所示,一半圆形闭合线圈通有电流I=10A,半径R=0.1m,放在匀强磁场B=0.5T中,当磁场方向与线圈平面平行时,线圈所受的磁力矩为()
肝破裂的特点是(请从以下5个备选答案中选出4个正确选项)
颈外静脉输液结束时采用的封管溶液为
背景某电缆输配电工程公司承接了一段30km长的直埋电缆敷设项目,电缆由业主提供,工期2个月,每拖延工期一天罚款3000元。考虑工期较为紧张,在土方开挖期间,该工程公司组织5名具有操作资质的员工驾驭挖掘机(其中No.5为外租的一辆)分段进行开挖,一
双新村与长福村相邻。2004年,两村因交界处50亩土地的使用权发生纠纷。县政府为此专门召开协调会,并形成一份“会议纪要”。“会议纪要”明确了两村对争议土地各自使用的面积和范围,县政府则根据这份“会议纪要”作出了有关决定。2009年12月,双新村村民葛某因需
按照职业操守规定,银行业从业人员()为其他岗位人员代为履行职责。
理财业务是经()批准的一项银行巾间业务。
2000年,宏发投资基金的基金总值的40%用于购买债券。近几年来,由于股市比较低迷,该投资基金更加重视投资债券。在2004年,其投资基金的60%都用于购买债券。因此,认为该投资基金购买债券比过去减少的观点是站不住脚的。以下哪项如果为真,最能削弱上
可以用来表示两种事物之间相关性的统计图是()。
最新回复
(
0
)