首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
admin
2017-05-31
64
问题
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
选项
答案
设x
0
为分段点. 若f(x
0
)≠0,则由题设可知,存在δ>0,使得当|x-x
0
|<δ时,f(x)与f(x
0
)同号,于是在该邻域内必有φ(x)=f(x)g(x)或φ(x)=-f(x)g(x)之一成立,所以φ(x)在点x
0
处必可导. 若f(x
0
)=0,不妨假设 [*] 由φ(x
0
)=f(x
0
)=0,可得 [*] 所以,φ(x)在x
0
处可导<=>f’(x
0
)g(x
0
)=0.且当f’(x
0
)g(x
0
)=0时,φ’(x
0
)=0.
解析
这是分段函数的可导性问题.只需讨论在分段点Xo处是否可导.分f(x
0
)≠0与f(x
0
)=0两种情形讨论.
转载请注明原文地址:https://kaotiyun.com/show/Eeu4777K
0
考研数学一
相关试题推荐
[*]
[*]
A、 B、 C、 D、 D
证明
设测量的随机误差X~N(0,102),试求100次独立重复测量,至少有3次测量误差的绝对值大于19.6的概率α,并用泊松分布求α的近似值.
下列给定区间中是函数f(x)=|x2|的单调有界区间的是
已知线性方程组(Ⅰ)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设常数a≠1/2,则=________.
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
随机试题
女,42岁,间断发热1个月,体温最高40.1℃,最低37.5℃,每日午后发热明显,伴有四肢关节疼及颜面和前胸部皮疹,体温正常时皮疹消失,关节疼痛可缓解。查红细胞沉降率82mm/h,血WBC16.0×109/L,血清铁蛋白增高,ANA(一),最可能的诊断是
五行中"火"的特性是
心血旺盛,才能维持正常的心脏搏动力。()
刘某亲自到公证机关办理了遗嘱公证,将遗产由其长子继承70%,次子继承30%。其第三子为此不满与刘某争吵。后离家出走,在途中被毒蛇咬伤,丧失劳动能力。第三子虽已年满25岁,但未结婚,至今没有工作。第三子出走后,刘某曾后悔,与邻居王某、李某说,要将自己的财产分
习近平总书记2020年1月8日在“不忘初心、牢记使命”主题教育总结大会上的讲话中引用了一句古语“君子之过也,如日月之食焉:过也,人皆见之;更也,人皆仰之。”下列选项最能体现这一古语精髓的是:()
大革命是指从1924年至1927年中国人民的反帝反封建的革命斗争,又被称为国民大革命、国民革命、国民革命运动。大革命失败的客观原因是
以下关于过程及过程参数的描述中,错误的是()。
Howmuchshouldthemanpay?
Scientistswhobelievecellphonesaredangeroushavebeenthrowingouthypothesestoexplainawaythenegativeresults.Maybes
Hetakesawalkalongtheriveraftersuppereveryday_____hishealth.
最新回复
(
0
)