首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
admin
2017-05-31
30
问题
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
选项
答案
设x
0
为分段点. 若f(x
0
)≠0,则由题设可知,存在δ>0,使得当|x-x
0
|<δ时,f(x)与f(x
0
)同号,于是在该邻域内必有φ(x)=f(x)g(x)或φ(x)=-f(x)g(x)之一成立,所以φ(x)在点x
0
处必可导. 若f(x
0
)=0,不妨假设 [*] 由φ(x
0
)=f(x
0
)=0,可得 [*] 所以,φ(x)在x
0
处可导<=>f’(x
0
)g(x
0
)=0.且当f’(x
0
)g(x
0
)=0时,φ’(x
0
)=0.
解析
这是分段函数的可导性问题.只需讨论在分段点Xo处是否可导.分f(x
0
)≠0与f(x
0
)=0两种情形讨论.
转载请注明原文地址:https://kaotiyun.com/show/Eeu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
A、 B、 C、 D、 C
设f(x)在(a,b)内连续,若存在x1,x2∈(a,b),x1<x2,使得f(x1)f(x2)<0,证明f(x)在(a,b)内至少有一个零点.
设m,n均是正整数,则反常积分的收敛性
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
已知3阶矩阵A的第一行是(a,6,c),a,b,c不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
(Ⅰ)因为[*]所以[*]单调减少,而a≥0,即[*]是单调减少有下界的数列,根据极限存在准则,[*](Ⅱ)由(Ⅰ)得0≤[*]对级数[*]因为[*]存在,所以级数[*]根据比较审敛法,级数
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度gradu|M=__________.
(2006年试题,18)设函数f(u)在(0,+∞)内具有二阶导数,且满足等式(I)验证(Ⅱ)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
随机试题
下列有物理屈服点的钢筋是()。
______,hefailedtopasstheexam.
劳动时人体所需的氧量主要取决于
下列移动平均线中,稳定性最大的是( )。
下列有关合并会计报表的表述中,正确的是()。
下面谱例出自作曲家()。
自2000年6月1日开始,110报警台履行接受群众监督的新职能。()
牢固树立群众意识,要求坚持以人为本,做到“权为民所用,情为民所系,利为民所谋”。()
下列选项中,不构成不当得利的情形有()。
WhydoesViviancallRoger?
最新回复
(
0
)