首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
admin
2017-05-31
49
问题
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
选项
答案
设x
0
为分段点. 若f(x
0
)≠0,则由题设可知,存在δ>0,使得当|x-x
0
|<δ时,f(x)与f(x
0
)同号,于是在该邻域内必有φ(x)=f(x)g(x)或φ(x)=-f(x)g(x)之一成立,所以φ(x)在点x
0
处必可导. 若f(x
0
)=0,不妨假设 [*] 由φ(x
0
)=f(x
0
)=0,可得 [*] 所以,φ(x)在x
0
处可导<=>f’(x
0
)g(x
0
)=0.且当f’(x
0
)g(x
0
)=0时,φ’(x
0
)=0.
解析
这是分段函数的可导性问题.只需讨论在分段点Xo处是否可导.分f(x
0
)≠0与f(x
0
)=0两种情形讨论.
转载请注明原文地址:https://kaotiyun.com/show/Eeu4777K
0
考研数学一
相关试题推荐
求极限1+cot2x.
证明f(x)=sinx-x在(-∞,+∞)上严格单调减少.
求下列已知曲线围成的平面图形绕指定的轴旋转而形成的旋转体的体积:xy=a2,y=0,x=a,x=2a(a>0)绕x轴和y轴;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记α=,β=若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22
设A和B是任意两个概率不为0的不相容事件,则下列结论中肯定正确的是()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2,则a1,A(a1+a2)线性无关的充分必要条件是().
在曲线z=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
(2005年试题,一)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
(2010年试题,1)极限等于().
随机试题
评估人员通过量化各种政策或行政方案的总成本和总效果来对它们进行对比从而提出建议的评估方法是【】
下列哪种疾病与输血无关?
A.牛肉膏蛋白胨B.煌绿、胆盐、硫代硫酸钠、枸橼酸盐C.乳糖D.胆盐E.中性红SS琼脂培养基是选择性很强的培养基,成分较多,其抑制剂为
下列项目中,能同时影响资产和负债发生变化的是()。
下列关于客户理财需要和目标分析的说法中,正确的是()。
()是发达国家企业实现技术国际化的最常用办法。
里坊制源于出现在秦朝的闾里制,并且继承了它的管理办法。()
马克思说:“一切商品对它们的所有者是非使用价值,对它们的非所有者是使用价值”。这句话的含义是
当各项目小组成员对职能经理和项目经理双重负责的时候,项目团队建设经常会显得比较复杂。对这种双重负责关系的有效管理通常是(45)的职责。
TheCarnegieFoundationreportsaysthatmanycollegeshavetriedtobe"allthingstoallpeople".Indoingso,theyhaveincre
最新回复
(
0
)