首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
admin
2017-05-31
58
问题
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
选项
答案
设x
0
为分段点. 若f(x
0
)≠0,则由题设可知,存在δ>0,使得当|x-x
0
|<δ时,f(x)与f(x
0
)同号,于是在该邻域内必有φ(x)=f(x)g(x)或φ(x)=-f(x)g(x)之一成立,所以φ(x)在点x
0
处必可导. 若f(x
0
)=0,不妨假设 [*] 由φ(x
0
)=f(x
0
)=0,可得 [*] 所以,φ(x)在x
0
处可导<=>f’(x
0
)g(x
0
)=0.且当f’(x
0
)g(x
0
)=0时,φ’(x
0
)=0.
解析
这是分段函数的可导性问题.只需讨论在分段点Xo处是否可导.分f(x
0
)≠0与f(x
0
)=0两种情形讨论.
转载请注明原文地址:https://kaotiyun.com/show/Eeu4777K
0
考研数学一
相关试题推荐
[*]
如果A={A,B,C,D},B={A,B,C},求A×B.
求极限1/x.
设xn=1/(n2+1)+1/(n2+2)+1/(n2+3)+…+1/(n2+n),求极限xn.
用区间表示满足下列不等式的所有x的集合:(1)|x|≤3(2)|x-2|≤1(3)|x-a|<ε(a为常数,ε>0)(4)|x|≥5(5)|x+1|>2
确定下列函数定义域:
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
(2002年试题,十)设A,B为同阶方阵.如果A、B相似,试证A、B的特征多项式相等;
随机试题
试述拉扎斯菲尔德、默顿、怀利和麦奎尔各自提出的大众传播社会功能的内容。
下列哪一项不是超声诊断异位妊娠声像图的表现:
坏疽性口炎的主要致病菌为
下列何物质不宜单独用作O/W乳化剂
背景某建设投资方对一国家大型能源建设工程项目是否进行投资建设进行了项目前期策划与研究。从投资安全的角度出发,投资方通过大量的市场调研和需求分析,形成以下共识:该项目市场投资前景很好,社会需求量大,也是国家积极支持的建设行业领域,项目投资成功的概率
下列各项中,会计科目不按其所属会计要素分类的项目是()。
同样是传授新知识,数学课一般采用讲解法,而语文课一般采用讲读法。即使是同一学科,如语文课,教记叙文和教说明文的方法也不尽相同。这主要说明了()
在桌子上有三个盖着盖子的盒子,其中第一个盒子内有两个红球,第二个盒子内有两个黄球,第三个盒子内有一个红球和一个黄球。三个盒子盖子上分别写着“红球”、“红黄球”、“黄球”,但是所有标签都标错了。从哪个盒子内取出一个球后,便能判断出所有盒子内都装着什么球?
【B1】【B10】
Imagineachartthatbeginswhenmanfirstappearedontheplanetandtrackstheeconomicgrowthofsocietiesfromthenforward.
最新回复
(
0
)