首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
admin
2013-03-19
62
问题
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x
2
y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
选项
答案
由全微分方程的条件,有 即x
2
+2xy-f(x)=f"(x)+2xy,亦即 f"(x)+f(x)=x
2
. 因而f(x)是初值问题[*]的解,从而解得 f(x)=2cosx+sinx+x
2
-2. 原方程化为 [xy
2
+2y-(2cosx+sinx)y]dx+(x
2
y+2x-2sinx+cosx)dy=0. 先用凑微分法求左端微分式的原函数: (1/2y
2
dx
2<
解析
转载请注明原文地址:https://kaotiyun.com/show/HH54777K
0
考研数学一
相关试题推荐
设A,B为3阶矩阵,且|A|=3,|B|=2,|A一1+B|=2,则|A+B一1|=________.
[2014年]设函数f(x)=arctanx,若f(x)=xf'(ξ),则=().
设当x→0时,ex一(ax2+bx+1)是比x2高阶的无穷小,则
设A为四阶实对称矩阵,且A2+A=O,若A的秩为3,则A相似于()
微分方程y"+y=x2+1+sinx的特解形式可设为
[2010年]设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题正确的是().
(1998年试题,二)已知函数y=y(x)在任意点x处的增量其中α是比△x(△x→0)高阶的无穷小,且y(0)=π,则y(1)=().
(00年)具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设多项式,则x2的系数和常数项分别为()
随机试题
餐厅服务员小王在上菜时不小心将热汤洒在了顾客身上,顾客衣服被弄脏,很生气,向小王索要赔偿,双方因此引发争执。如果你是这家餐厅的店长,你会怎么处理?
“倒杯茶喝”的短语构造方式是_____。
内容效度
膀胱肿瘤临床和病理分期的主要依据是
未经有关部门批准而擅自开办诊所。卫生行政部门可采取的措施不包括()
()是控制和管理计算机硬件和软件资源,合理地组织计算机流程以及方便用户的程序集合。
某商品流通企业顺应时代潮流的发展,将采购活动从与供应商的单纯买卖关系,转向与供应商建立合作伙伴关系。其具体做法是,按一定的标准,用科学的方法,选择较好的供应商,并对初步选出的供应商的供货情况做进一步的评审,然后再确定哪些供应商为重点供应商,哪些为普通供应商
预算草案在未经权力机关批准之前,仅是一种不具有法律效力的国家预算。()
《红楼梦》中林黛玉的母亲名“敏”,因此林黛玉读书时,凡遇“敏”字皆念作“密”字,写字遇到“敏”字亦减一二笔,林黛玉在此用了古代避讳中的()。
为了测试汽车安全气囊的安全性,用计算机制作汽车碰撞的全过程,在此使用的计算机技术是()。
最新回复
(
0
)