首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
admin
2013-04-04
99
问题
设向量α
1
,α
2
,...,α
t
是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α
1
,β+α
2
,…,β+α
t
线性无关.
选项
答案
证法一:(定义法) 若有一组数k,k
1
,k
2
,…,k
t
,使得 kβ+k
1
(β+α
1
)+k
2
(β+α
2
)+…k
t
(β+α
t
)=0, 则因α
1
,α
2
,...,α
t
是Ax=0的解,知Aα
i
=0(i=1,2,…,t),用A左乘上式的两边,有 (k+k
1
+k
2
+…+k
t
)Aβ=0. 由于Aβ≠0,故k+k
1
+k
2
+…+k
t
=0. 重新分组为(k+k
1
+k
2
+…+k
t
)β+k
1
α
1
+k
2
α
1
+…+t
t
α
t
=0. k
1
α
1
+k
2
α
1
+…+t
t
α
t
=0. 由于α
1
,α
2
,...,α
t
是基础解系,它们线性无关,故必有 k
1
=0,k
2
=0,…,k
t
=0. k=0. 因此,向量组β,β+α
1
,...,β+α
t
线性无关. 证法二:(用秩) 经初等变换向量组的秩不变.把第1列的一1倍分别加至其余各列,有 (β,β+α
1
,β+α
2
,...,β+α
t
)→(β,α
1
,α
2
,…,α
t
). 因此 r(β,β+α
1
,β+α
2
,...,β+α
t
)=r(β,α
1
,α
2
,…,α
t
). 由于α
1
,α
2
,…,α
t
是基础解系,它们是线性无关的,秩r(α
1
,α
2
,…,α
t
)=t,又β必不能由α
1
,α
2
,…,α
t
线性表出(否则Aβ=0),故 r(β,α
1
,α
2
,…,α
t
,β)=t+1. 所以 r(β,β+α
1
,β+α
2
,...,β+α
t
)=t+1. 即向量组β,β+α
1
,β+α
2
,...,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/9X54777K
0
考研数学一
相关试题推荐
(2009年)(Ⅰ)证明拉格朗日中值定理:若函数f(χ)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f′(ξ)(b-a).(Ⅱ)证明:若函数f(χ)在χ=0处连续,在(0,δ)(δ>0)内可导,且f′(χ
设m,n均是正整数,则反常积分的收敛性
已知函数y=f(x)对一切x满足xf"(x)+3x[f’(x)]2=1-ex,若f’(x0))=0(x0)≠0),则
设函数f(x)在区间[-2,2]上可导,且f’(x)>f(x)>0,则
A、 B、 C、 D、 A
[2015年]设矩阵.若集合Ω={1,2},则线性方程组AX=b有无穷多解的充分必要条件为().
微分方程y"+y=x2+1+sinx的特解形式可设为
如果函数在x=0处有连续导数,求λ的取值范围.
曲线y=y(x)可表示为x=t3-t,y=t4+t,t为参数,证明:g(t)=在t=0处取得极大值。
已知方程组(Ⅰ)与方程组(Ⅱ)是同解方程组,求参数a,b,c.
随机试题
药物牙膏必须
1mol刚性双原子分子理想气体,当温度为T时,其内能为()。
砌体结构相关的温度应力问题,以下论述不妥的是( )。
用人单位每月要求劳动者延长工作时间最长()。
由承包人供应的( )在使用前,承包人应按照工程师的要求进行检验或试验,不合格的不得使用,检验或试验费用由承包人承担。
在个人住房贷款业务中,贷款审批环节的主要业务风险控制点不包括()。
如果出现下列()情况,注册会计师无需将统计抽样用于控制测试,便可直接作出拒绝信赖内部控制的决定。
和平犹如空气和阳光,受益而不觉,失之则难存,没有和平,发展就无从谈起。国家无论大小、强弱、贫富,都应该做和平的维护者和促进者。这表明()。
根据下列材料回答下列题。2009年末,云南省共有金融企业法人单位414个。其中,银行业占48.1%,证券业占1.7%,保险业占22.7%,其他金融活动业占27.5%。金融企业就业人员13.96万人。其中,银行业占62.4%,证券业占1.4%,保险业
Amongtheraftofbooks,articles,jokes,romanticcomedies,self-helpguidesandotherwritingsdiscussingmarriage,somefamil
最新回复
(
0
)