首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求: (1)A2; (2)A的特征值和特征向量; (3)A能否相似于对角阵,说明理由.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αβT=0,记n阶矩阵A=αβT,求: (1)A2; (2)A的特征值和特征向量; (3)A能否相似于对角阵,说明理由.
admin
2016-09-19
72
问题
设向量α=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
都是非零向量,且满足条件αβ
T
=0,记n阶矩阵A=αβ
T
,求:
(1)A
2
;
(2)A的特征值和特征向量;
(3)A能否相似于对角阵,说明理由.
选项
答案
(1)由A=αβ
T
和α
T
β=0,有 A
2
=AA=(αβ
T
)(αβ
T
)=α(β
T
α)β
T
=(β
T
α)αβ
T
=(α
T
β)αβ
T
=O,即A是幂零阵(A
2
=O). (2)利用(1)A
2
=O的结果.设A的任一特征值为λ,对应于λ的特征向量为ξ,则Aξ=λξ. 两边左乘A,得 A
2
ξ=λAξ=λ
2
ξ. 因A
2
=O,所以λ
2
ξ=0,ξ≠0,故λ=0,即矩阵A的全部特征值为0. (3)A不能相似于对角阵,因α≠0,β≠0,故A=αβ
T
≠O,r(A)=r≠0(其实r(A)=1,为什么?).从而对应于特征值λ=0(n重)的线性无关的特征向量的个数是n-r≠n个,故A不能对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/EkT4777K
0
考研数学三
相关试题推荐
[*]
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设λ=2是非奇异矩阵A的一个特征值,则矩阵(1/3A2)-1有一个特征值等于
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量(产品的产量),Q(P)是单调减函数,如果当价格为Po,对应产量为Qo时,边际收
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
下列哪种激素的分泌不受腺垂体的控制
深度为15m的人工挖孔桩工程,()。
不符合终止经营定义的持有待售的非流动资产或处置组,其减值损失和转回金额及处置损益应当作为持续经营损益列报。()
住宅专项维修资金是指专项用于住宅()保修期满后的维修和更新、改造的资金。
【2012年烟台市市直】群体发展的最高阶段是()。
标志着我国剥削制度被消灭的历史事件是
中共十八届四中全会通过的《中共中央关于全面推进依法治国若干重大问题的决定》提出,坚持依法治国首先要坚持依宪治国,坚持依法执政首先要坚持依宪执政。中国特色社会主义政治最本质的特征、社会主义法治的最根本保证是()
=________.
微机的主机指的是_______。
SoapOperasAsoapoperaisaserialontelevisionorradio/whereeachepisodelinkstothenextepisode./Soyou’rea
最新回复
(
0
)