首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
admin
2016-10-20
50
问题
设当x>0时,方程kx+
=1有且仅有一个解,求k的取值范围.
选项
答案
设f(x)=kx+[*]-1(x>0),则 [*] (Ⅰ)当k≤0时,f’(x)<0,f(x)单调减少,又 [*] 故f(x)此时只有一个零点. (Ⅱ)当k>0,由f’(x)=0,得[*]是极小值点,且极小值为 [*] 当极小值为零时,即当 [*] 时,有k=[*],此时方程有且仅有一个根;当k≠[*]时,方程无根或有两个根. 因此,k的取值范围为k≤0及[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/F0T4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).设P(5位顾客全部购买滚筒洗衣机)=0.0768,P(5位顾客全部购买直筒洗衣机)=0.0102,那么两类洗衣机都至少卖出一台的概率是多大?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
求曲线x2+z2=10,y2+z2=10在点(1,1,3)处的切线和法平面方程.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
设∑是空间有界闭区域Ω的整个边界曲面,u(x,y,z),v(x,y,z)∈C(2)(Ω),分别表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数,证明:
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
随机试题
下列不符合良性畸胎瘤的描述是
应指导胃食管反流病病人不要穿紧身衣服和束紧腰带,以免增加腹压,诱发反流。
1.背景某幕墙公司通过招投标从总承包单位承包了某机关办公大楼幕墙工程的施工任务。承包合同约定,本工程实行包工包料承包,合同工期180个日历天。在合同履行过程中发生了以下事件:事件一:按照合同约定,总承包单位应在8月1日交出施工场地,但由于总承包单位负责
总分类账户与所属明细分类账户在金额上必然相等的关系,称为()。
下列有关文学常识的表述正确的一项是()
根据《中华人民共和国未成年人保护法》的规定,县级以上人民政府及其民政部门应当根据需要设立救助场所,对流浪乞讨等生活无着落的未成年人实施救助,承担()。
关于数码技术,下列说法不正确的是:
【中山大学2015翻译硕士】就以下引语中的一条或几条发表自己的看法。写作文体不限,字数不少于800字。1.读书要在不疑处有疑,做人要在有疑处不疑。—胡适2.操千曲而后晓声,观千剑而后识器。—【南北朝】刘勰3.曲终人不散,江上数峰青。—【唐】钱起4
下面关于报表对数据的处理的叙述正确的选项是______。
下列关于持仓量与价格变动的说法中,正确的是()。
最新回复
(
0
)