首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
admin
2017-06-08
109
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
选项
答案
由于α
1
,α
2
,α
3
,线性无关,矩阵P=(α
1
,α
2
,α
3
)可逆,并且 E=P
-1
(α
1
,α
2
,α
3
)=(P
-1
α
1
,P
-1
α
2
,P
-1
α
3
), 则P
-1
α
1
=(1,0,0)
T
,P
-1
α
2
=(0,1,0)
T
,P
-1
α
3
=(0,0,1)
T
,于是 B=P
-1
AP=P
-1
A(α
1
,α
2
,α
3
)=P
-1
(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/F0t4777K
0
考研数学二
相关试题推荐
[*]
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
证明:当x≥5时,2x>x2.
αi≠αj(i≠j,I,j=1,2,…,n),则线性方程ATx=B的解是________.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
随机试题
下列何结构不属于眼的折光系统的结构()
肝硬化时相关临床表现错误的是
能使血小板破坏增多导致血小板减少见于()
8岁男孩,于1998年3月因低热,多汗1月余,鼻出血、腹痛2天来院。体格检查:发育中,营养可,精神好,咽部轻度充血,扁桃体Ⅱ度肿大,心脏扪诊不大,有Ⅱ级收缩期杂音,肺部无哕音,肝脾未触及。实验室检查:lib100S/l,红细胞3.5×1012/L,血沉70
A.甘草B.远志C.商陆D.葛根E.地榆表面有较密的横环纹,皮部易与木部剥离,嚼之有刺喉感的药材是
某企业在制订生产计划的过程中,采取了盈亏平衡分析法,相关信息如下图所示。根据以上资料,回答下列问题:盈亏平衡点法是确定()的指标。
国家规定职工带薪休假,让你做个调研,你如何开展?
A=RotherhitheB=BarnesC=WillesdenD=King’sCrossWhichcity…usedtohavelotofproblemssuchasdrugs,streetcrime,
WhileinLondon,wepaidavisittothehospitalfounded______thenurseFlorenceNightingale.
A、Playinaband.B、Workattheauction.C、Sellrefreshments.D、Collecttickets.CWhatwillthewomandoduringthefair?
最新回复
(
0
)