首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
admin
2017-06-08
59
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量组,满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求作矩阵B,使得A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)B.
选项
答案
由于α
1
,α
2
,α
3
,线性无关,矩阵P=(α
1
,α
2
,α
3
)可逆,并且 E=P
-1
(α
1
,α
2
,α
3
)=(P
-1
α
1
,P
-1
α
2
,P
-1
α
3
), 则P
-1
α
1
=(1,0,0)
T
,P
-1
α
2
=(0,1,0)
T
,P
-1
α
3
=(0,0,1)
T
,于是 B=P
-1
AP=P
-1
A(α
1
,α
2
,α
3
)=P
-1
(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/F0t4777K
0
考研数学二
相关试题推荐
[*]
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
证明:[*]
设A,B为同阶可逆矩阵,则().
设n阶方阵A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.求A的全部特征值;
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设n>1,n元齐次方程组AX=0的系数矩阵为(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
随机试题
A、Hewantstolearntoplaytheclarinet.B、Hewantstoplayintheband.C、Hishandisperformingnextweek.D、Hewasn’tplayin
贝尔面瘫的可能病因不包括
两种药物合用,能产生毒性反应或不良反应称为一种药物能减轻或消除另一种药物的毒性或不良反应,称为
冲压加工的原理是()
若直方图呈正态分布,质量特性值的分布范围比较集中,并全部在公差带内,平均值在中间,两侧略有余地,生产稍有波动也不会超出公差界限,说明生产( )。
工业企业燃气管道包括()。
Beingabletomuhitaskishailedbymostpeopleasawelcomeskill,butnotaccordingtoarecenlstudywhichclaimsthatyoungp
村民吴某称自己上初中的女儿在学校被侮辱,从学校的三楼跳下,小腿等多处骨折,目前在医院处于暂时昏迷状态,由吴某的家人负责照料。吴某到学校找到女儿的班主任,班主任称自己也是刚刚得知。吴某情急之下,纠集数十位情绪激动的亲朋好友来到镇政府门口,欲为女儿讨要说法。
英语:日语:汉语
In1998consumerscouldpurchasevirtuallyanythingovertheInternet.Books,compactdiscs,andevenstockswereavailablefrom
最新回复
(
0
)