首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角线
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角线
admin
2020-03-05
61
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,
a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i一1个分量都是0,B的第j个列向量的后面n一j个分量都是0,而i一1+n—j=n+(i—j一1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
…=a
ii-1
=0,b
i+1i
…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/F5S4777K
0
考研数学一
相关试题推荐
函数z=1-(x2+2y2)在点M0()处沿曲线C:x2+2y2=1在该点的内法线方向n的方向导数为____________.
二次型f(x1,x2,x3)=x12+4x22+4x32=4x1x2+4x1x3-8x2x3的规范形是()
设a>0为常数,则级数
设随机变量x服从指数分布,E(X)=5,令Y=min{X,2},则随机变量Y的分布函数F(y)=________.
设总体X服从正态分布N(0,σ2),X1,X2,…,X10是取自总体X的简单随机样本,统计量Y=(1<i<10)服从F分布,则i等于()
设随机变量X与y相互独立且都服从参数为λ的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().
微分方程yy’’-2(y’)2=0的通解为()
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:(b一a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx.(*)
设讨论函数f(x)的连续性,若有间断点,指明其类型.
若随机变量X1,X2,…,Xn相互独立同分布于(μ,22),则根据切比雪夫不等式得P{|一μ|≥2}≤___________.
随机试题
急性肾小球肾炎中医辨证分型除风水相搏外尚有
甲公司在一次省政府所举行的管道燃气供应的招标活动中中标,但参加投标活动的乙公司对此次招标活动不满,欲向省政府就此次招标活动申请听证。下列各选项中正确的是:
不论是由建设工程参与方的哪一方提出的设计变更,作出变更决定后都应由( )签发《工程变更单》,指示承包单位按变更的决定组织方可施工。
某新校区抗震模拟实验室工程,主体部分采用钢架结构,施工合同约定钢材由业主供料,其余材料均委托承包商采购。但承包商在以自有机械设备进行主体钢结构制作吊装过程中,由于业主供应钢材不及时导致承包商停工7天,则承包商计算施工机械窝工费时,应按()向业主提出
()是指由财政部发行的,有固定面值及票面利率,通过纸质媒介记录债权债务的国债。
学生的权利有哪些?
课程目标的基本特征有哪些?
某日,甲市振兴区某职业中学学生(14周岁)、吴某(15周岁)、郑某(女、14周岁)、汪某(16周岁)因网络赌博输钱,囊中羞涩,于是商量要弄点钱。见路人杜某随身携带挎包走来,决定抢包。吴某和郑某把风,汪某和周某上前拽走杜某挎包后欲逃跑,被杜某拽住。随即四人对
对违法犯罪分子的改造工作,是()的特殊预防工作。
某投资者在3个月后将获得一笔资金,并希望用该笔资金进行股票投资。但是,该投资者担心股市整体上涨从而影响其投资成本,在这种情况下,可采取()策略。
最新回复
(
0
)