首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角线
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积. (2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k, a22k,…,annk;f(A)的对角线
admin
2020-03-05
46
问题
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.
(2)证明上三角矩阵A的方幂A
k
与多项式f(A)也都是上三角矩阵;并且A
k
的对角线元素为a
11
k
,
a
22
k
,…,a
nn
k
;f(A)的对角线元素为f(a
11
),f(a
22
),…,f(a
nn
).
(a
11
,a
22
,…,a
nn
是A的对角线元素.)
选项
答案
(1)设A和B都是n阶上三角矩阵,C=AB,要说明C的对角线下的元素都为0,即i>j时,c
ij
=0.c
ij
=A的第i个行向量和B的第j个列向量对应分量乘积之和.由于A和B都是n阶上三角矩阵,A的第i个行向量的前面i一1个分量都是0,B的第j个列向量的后面n一j个分量都是0,而i一1+n—j=n+(i—j一1)≥n,因此c
ij
=0. c
ii
=a
i1
b
1i
+…+a
ii-1
b
i-1i
+a
ii
b
ii
+a
ii+1
b
i+1i
+…+a
in
b
ni
=a
ii
b
ii
(a
i1
…=a
ii-1
=0,b
i+1i
…=b
ni
=0). (2)设A是上三角矩阵.由(1),直接可得A
k
是上三角矩阵,并且对角线元素为a
11
k
,a
22
k
,…,a
nn
k
. 设f(A)=a
m
A
m
+a
m-1
A
m-1
+…+a
1
A+a
0
E.a
i
A
i
都是上三角矩阵,作为它们的和,f(A)也是上三角矩阵.f(A)的对角线元素作为它们的对角线元素的和,是f(a
11
),f(a
22
),…,f(a
nn
).
解析
转载请注明原文地址:https://kaotiyun.com/show/F5S4777K
0
考研数学一
相关试题推荐
设且f’(0)存在,则a=________,b=________,c=_________
对随机变量X,Y,已知3X+5Y=11,则X和Y的相关系数为_______.
设,|A|>0且A*的特征值为一1,一2,2,则a11+a22+a33=___________.
二次型f(x1,x2,x3)=x12+4x22+4x32=4x1x2+4x1x3-8x2x3的规范形是()
假设随机变量X的分布函数为F(x),密度函数为f(x).若X与-X有相同的分布数,则对于任意实数x,有().
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足________.
设j阶方阵A、B满足关系式A-1BA=6A+BA,且则B=________.
幂级数x2n的收敛域及函数是_________________.
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
设x1,x2,…,xn是来自总体X~N(μ,σ2)(μ,σ2都未知)的简单随机样本的观察值,则σ2的最大似然估计值为()
随机试题
()是断定几种事物情况同时存在的判断。
一台主机或路由器同因特网有多个接口,为保证唯一性,其只能拥有一个IP地址。()
A、Therewerenoplanetswithoutmoons.B、TherewasnoairorwateronJupiter.C、Lifewasnotpossibleinouterspace.D、Themys
预防手术后尿潴留,下列错误的是【】
区别轻、重型婴儿腹泻的主要指标是
治疗闭角型青光眼应选择
合并企业的成本与收益等于社会的成本与收益,不存在外部效应。()
A、 B、 C、 D、 A分子2,5,8,11,(14)是公差为3的等差数列,分母3,7,11,15,(19)是公差为4的等差数列。
我国社会主义法律体系可以分为()。
Inotifiedhimthatmyaddresshadchanged.
最新回复
(
0
)