首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. ①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关. ②设α1,α2,α3的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
设α1,α2,α3都是矩阵A的特征向量,特征值两两不同,记γ=α1+α2+α3. ①证明γ,Aγ,A2γ线性无关,γ,Aγ,A2γ,A3γ线性相关. ②设α1,α2,α3的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A2γ),β=A3γ
admin
2017-11-23
38
问题
设α
1
,α
2
,α
3
都是矩阵A的特征向量,特征值两两不同,记γ=α
1
+α
2
+α
3
.
①证明γ,Aγ,A
2
γ线性无关,γ,Aγ,A
2
γ,A
3
γ线性相关.
②设α
1
,α
2
,α
3
的特征值依次为1,一1,2,记矩阵B=(γ,Aγ,A
2
γ),β=A
3
γ,求解线性方程组BX=β.
选项
答案
(1)设α
1
,α
2
,α
3
的特征值为a,b,c,由于它们两两不同,α
1
,α
2
,α
3
线性无关, γ=α
1
+α
2
+α
3
,Aγ=aα
1
+bα
2
+cα
3
, A
2
γ=a
2
α
1
+b
2
α
2
+c
2
α
3
,A
3
γ=a
3
α
1
+b
3
α
2
+c
3
α
3
, 则γ,Aγ,A2γ对α
1
,α
2
,α
3
的表示矩阵为 [*] 其行列式为范德蒙行列式,并且(因为a,b,c两两不同)值不为0,于是r(γ,Aγ,A
2
γ)=r(α
1
,α
2
,α
3
)=3,因此γ,Aγ,A
2
γ无关. γ,Aγ,A
2
γ,A
3
γ可以用α
1
,α
2
,α
3
线性表示,因此线性相关. (2)γ=α
1
+α
2
+α
3
,Aγ=α
1
一α
2
+2α
3
,A
2
γ=α
1
+α
2
+4α
3
,A
3
γ=α
1
一α
2
+8α
3
,B=(γ,Aγ,A
2
γ)=(α
1
,α
2
,α
3
) [*] β=A
3
γ=(α
1
,α
2
,α
3
) [*] 则BX=β具体写出就是 [*] 由于α
1
,α
2
,α
3
线性无关,它和 [*] 同解.解此方程组得唯一解(一2,1,2)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/F8r4777K
0
考研数学一
相关试题推荐
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设有曲面S:2x2+4y2+z2=4与平面π:2x+2y+z+5=0,试求曲面S上的点及其上的切平面与法线方程,使该切平面与平面π平行;
计算极限
设矩阵A满足(2E—C-1B)AT=C-1,且,求矩阵A.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
设f(x)是连续函数.求初值问题的解,其中a>0;
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ.
下列结论中不正确的是()。
判别级数的敛散性,其中{xn}是单调递增而且有界的正数数列.
随机试题
对产品成本的高低有决定性影响的是()
临床意义最大的血型系统是()
可导致肝硬化的DNA肝炎病毒是
子宫肌瘤合并妊娠下列哪种变性多见
人身保险合同中由投保人指定的,在保险事故发生后享有保险赔偿与保险金请求权的人是()。
根据《建设工程安全生产管理条例》的规定,施工单位主要负责人的安全生产方面的主要职责有()。
面对当前错综复杂的国际国内形势。中央在宏观调控政策上提出了保增长、扩内需的要求,你认为可以采取哪些可行措施来实现保增长、扩内需?
考生文件夹下存在一个数据库文件"samp2.mdb",里面已经设计好表对象"tQuota"和"tStock",试按以下要求完成设计:(1)创建一个查询,查找库存数量高于30000(包含30000)的产品,并显示"产品名称"、"规格"、"库存数量"和"最高
ToMyDearandLovingHusbandisapoemby______whopublishedtheveryfirstcollectionofpoeminAmericanliteraturehistory.
Friendsplayanimportantpartinourlives,andalthoughwemaytakethefriendshipfor【S1】______,weoftendon’tclearlyunder
最新回复
(
0
)