首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n为正整数,f(x)=(x-1)n(x+1)n.证明方程f(n)(x)=0在(-1,1)中恰好有n个相异实根.
设n为正整数,f(x)=(x-1)n(x+1)n.证明方程f(n)(x)=0在(-1,1)中恰好有n个相异实根.
admin
2022-11-23
27
问题
设n为正整数,f(x)=(x-1)
n
(x+1)
n
.证明方程f
(n)
(x)=0在(-1,1)中恰好有n个相异实根.
选项
答案
设n为正整数,f(x)=(x-1)
n
(x+1)
n
.证明方程f
(n)
(x)=0在(-1,1)中恰好有n个相异实根.@证@∵±1为方程f(x)=0的n重根,于是该方程有2n个实根.由于 f’(x)=n(x-1)
n-1
(x+1)
n
+n(x-1)
n
(x+1)
n+1
=2nx(x-1)
n-1
(x+1)
n+1
. 故f’(x)=0以.以x=0为单根,x=±1为(n-1)重根.因为f’(0)=f’(1)=f’(-1)=0,由罗尔中值定理,[*]ξ
1
(2)
,ξ
2
(2)
,满足-1<ξ
1
(2)
<0<ξ
2
(2)
<1,使得f”(ξ
1
(2)
)=f”(ξ
2
(2)
)=0,于是f”(x)=0有两个单根;又因为f”(x)=p
2
(x)(x-1)
n-2
(x+1)
n-2
,其中p
2
(x)为二次多项式,故方程f”(x)=0还有两个(n-2)重根±1. 由此可推测当导数增高一次,相异单根增加一个,但重根±1的重数各下降一次.现用数学归纳法证明相应结论. 若f
(k)
(x)=0,1≤k<n有k个不同单根ξ
1
(k)
<ξ
2
(k)
<…<ξ
k
(k)
,±1为其(n-k)重根. f
(k)
(x)=p
k
(x)(x-1)
n-k
(x+1)
n-k
, 由罗尔中值定理,f
(k+1)
=0有(k+1)个单根{ξ
i
(k+1)
}
i=1
k+1
-1<ξ
1
(k+1)
<ξ
1
(k)
<ξ
2
(k+1)
<…<ξ
k
(k)
<ξ
k+1
(k+1)
<1, f
(k+1)
(x)=p
k+1
(x)(x-1)
n-(k+1)
(x+1)
n-(k+1)
, 其中p
k+1
(x)为(k+1)次多项式,即f
(k+1)
(x)有两个n-(k+1)重根±1.当k=n-1时,f
(n)
(x)=0正好有n个相异实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/FDgD777K
0
考研数学三
相关试题推荐
“不要人夸好颜色,只留清气满乾坤。”是元代诗人王冕的诗句。()
普通话语音规范是“以北京语音为标准音”,因此北京话中的语音成分都是标准音。()
简述缓刑的适用条件。
简述宣告死亡的条件。
已知方程组则logmn+lognm的值为().
圆(x-2)2+(y+1)2=9中所有长度为2的弦的中点的轨迹方程是().
关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1,x2,且x12+x22=7,则(x1-x2)2的值是()。
设等比数列{an}的前n项和为Sn,若Sn=8,S2n=24,则S5n-S4n=()。
当x,y满足约束条件(k为常数)时,使z=x+3y取得最大值12的k值为()。
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+by22-4y32,求:常数a,b;正交变换的矩阵Q.
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)