首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明存在ξ∈(0,3),使f’’(ξ)=0。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。 证明存在ξ∈(0,3),使f’’(ξ)=0。
admin
2018-01-30
36
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫
0
2
f(x)dx=f(2)+f(3)。
证明存在ξ∈(0,3),使f
’’
(ξ)=0。
选项
答案
因为f(2)+f(3)=2f(0),即[*]=f(0),又因为f(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0)。 又因为函数在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔定理知,存在ξ
1
∈(0,η),有f
’
(ξ
1
)=0。 因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔定理知,存在ξ
2
∈(η,η
1
),有f
’
(ξ
2
)=0。 因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f
’
(ξ
1
)=f
’
(ξ
2
)=0,根据罗尔定理,至少存在一点ξ∈(ξ
1
,ξ
2
),使得f
’’
(ξ)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/FGk4777K
0
考研数学二
相关试题推荐
[*]
[*]
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:(1)存在η∈(1/2,1),使f(η)=η;(2)对任意实数λ,必存在ε∈(0,η),使得fˊ(ε)-λ[f(ε)-ε]=1
求下列不定积分:
证明函数y=sinx-x单调减少.
设试求:函数f(a)的值域.
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C,又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=______.
设f(x)=(Ⅰ)证明f(x)是以π为周期的周期函数.(Ⅱ)求f(x)的值域.
随机试题
闭合性胸部损伤可导致
骨性关节炎镇痛治疗首选
牙源性钙化上皮瘤中的钙化物质来源于
A.肝病及心B.肝病及肾C.肝病及肺D.肝病及脾E.脾病及心属五行相侮传变的是()
熟狗脊片的加工方法是白芍的加工方法是
根据《保险法》规定,人身保险投保人对下列哪一类人员具有保险利益?()
王先生20年前曾经在南京工作。这次参加一个旅游团故地重游。10月5日晚全团在吃风味晚餐的时候,王先生看到靠窗的一对老年人有些面熟,走近一看,是自己原工作单位的同事,双方相见,十分激动,这对夫妇盛情邀请王先生到他们家做客,但王先生说团队第二天要去参观中山陵,
一个优秀团队的表现是()
已知字符A的ASCII码值是65,字符变量c1的值是’A’,c2的值是’D’,则执行语句printf("%d,%d",c1,c2-2);的输出结果是()。
Micro-EnterpriseCreditforStreetYouthA)Althoughsmall-scalebusinesstrainingandcreditprogramshavebecomemorecommonth
最新回复
(
0
)