设P(x)在[0,+∞)连续且为负值,y=y(x)在[0,+∞)连续,在(0,+∞)满足y′+P(x)y>0且y(0)≥0,求证:y(x)在[0,+∞)单调增加.

admin2016-10-26  23

问题 设P(x)在[0,+∞)连续且为负值,y=y(x)在[0,+∞)连续,在(0,+∞)满足y′+P(x)y>0且y(0)≥0,求证:y(x)在[0,+∞)单调增加.

选项

答案由y′+P(x)y>0(x>0)[*]y(x)在[0,+∞)连续, [*] [*]y(x)>0(x≥0)[*]y′(x)>-P(x)y(x)>0(x>0)[*]y(x)在[0,+∞)单调增加.

解析
转载请注明原文地址:https://kaotiyun.com/show/FGu4777K
0

随机试题
最新回复(0)