首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③符Ax=0与Bx=0同解,则秩(A)
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B); ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③符Ax=0与Bx=0同解,则秩(A)
admin
2012-02-25
97
问题
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:
①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);
②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
③符Ax=0与Bx=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则Ax=0与Bx=0同解.
以上命题中正确的是
选项
A、①②.
B、①③.
C、②④.
D、③④.
答案
B
解析
转载请注明原文地址:https://kaotiyun.com/show/8n54777K
0
考研数学一
相关试题推荐
设α1,α2,α3,α4为线性方程组Ax=0的一个基础解系,β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,试问实数t满足什么关系时,β1,β2,β3,β4也为Ax=0的一个基础解系。
A、 B、 C、 D、 B
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则
(2013年)已知y1=e3χ-χe2χ,y2=eχ-χe2χ,y3=-χe2χ是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|χ=0=0,y′|χ=0=1的解为y=_______.
设α1,α2,α3);均为3维列向量,记矩阵A={α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=________.
设函数f(x,y)可微,且对任意的x,y,都有,则使不等式f(x1,y1)<f(x2,y1)成立的一个充分条件是
用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"-xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解。
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
随机试题
设函数f(x)在x=x0处可导,且f’(x0)=-1,则=()
患者,男,44岁。右胸车祸伤2小时,右胸痛,呼吸困难,发绀。查体:右前胸未见反常呼吸运动,胸部挤压试验阳性,右肺呼吸音降低。胸片显示右侧第8~10肋骨后端骨折。不恰当的处理是
女性,33岁,头部外伤5小时,伤后有一过性意识障碍,3小时后再次出现昏迷。检查右颞部头皮水肿,右瞳孔散大。CT扫描显示右侧颞部硬膜外血肿。首选治疗方案()
科学发展观是在()的基础上提出的。
按照《关于从事证券期货相关业务的资产评估机构有关管理问题的通知》的规定,资产评估机构申请证券评估资格,净资产不少于()万元。
“心理治疗”与“心理咨询”,在临床干预中()。
(甲)宋儒理学的代表人物中,如陆九渊的读书经验也有可取之处。《陆象山语录》有一则写道:“如今读书且平平读,未晓处且放过,不必太滞。”接着,他又举出下面的一首诗:“读书切戒在慌忙,涵泳工夫兴味长;未晓不妨权放过,切身须要急思量。”这就是所谓“读书不
求极限.
WallStreetStocksaremixedwithbluechipsreboundingfrom(1).RightnowtheDOWindustrialsareupnearly12pointsat(2)
Inpolicework,youcanneverpredictthenextcrimeorproblemNoworkingdayis【B1】______toanyother,sothereisno"【B2】_
最新回复
(
0
)