首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
设α1,α2,…,αn是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
admin
2017-01-21
64
问题
设α
1
,α
2
,…,α
n
是一组n维向量,证明它们线性无关的充分必要条件是任一n维向量都可由它们线性表示。
选项
答案
必要性:a
1
,a
2
,…,a
n
是线性无关的一组n维向量,因此r(a
1
,a
2
,…,a
n
)=n。对任一n维向 量b,因为a
1
,a
2
,…,a
n
,b的维数n小于向量的个数n+1,故a
1
,a
2
,…,a
n
,b线性相关。 综上所述r(a
1
,a
2
,…,a
n
,b)=n。 又因为a
1
,a
2
,…,a
n
线性无关,所以n维向量b可由a
1
,a
2
,…,a
n
线性表示。 充分性:已知任一n维向量b都可由a
1
,a
2
,…,a
n
线性表示,则单位向量组:ε
1
,ε
2
,…,ε
n
可由 a
1
,a
2
,…,a
n
线性表示,即 r(ε
1
,ε
2
,…,ε
n
)=n≤r(a
1
,a
2
,…,a
n
), 又a
1
,a
2
,…,a
n
是一组n维向量,有r(a
1
,a
2
,…,a
n
)≤n。 综上,r(a
1
,a
2
,…,a
n
)=n。所以a
1
,a
2
,…,a
n
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/FLH4777K
0
考研数学三
相关试题推荐
某天文台的外形是圆柱体的上方接一半球体(如图2.11所示),其体积是V,考虑材料和加工两方面的因素,半球顶表面每平方米的费用是圆柱体侧面每平方米的费用的2倍,问圆柱体的底面半径R与它的高h的比例为多少时,费用最省?
设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,X和S2分别为样本均值和样本方差.记统计量T=X-S2,则ET=___________.
一实习生用同一台机器接连独立地制造3个同种零件,第i个零件是不合格品的概率Pi=1/(i+1)(i=1,2,3),以X表示3个零件中合格品的个数,则P{X=2}=___________.
假设二维随机变量(X,Y)在矩形G={丨x,y)丨0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的联合分布;
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)的表达式.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设矩阵A,B满足A*BA=2BA-8E,其中E为单位矩阵,A*为A的伴随矩阵,则B=_________.
对于第二类曲面积分,写出类似于公式(10)那样的计算公式,其中定向光滑曲面∑的方程为:(1)y=y(z,x),(z,x)∈Dzx;(2)x=x(y,x),(y,z)∈Dyz.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
随机试题
冷原子吸收法测定总汞时,试样消解后,在强酸性介质中,汞离子被硼氢化钠还原成元素汞,通过载气吹入汞测定仪进行冷原子吸收测定。
简述预算的分类。
OneBritishschoolisfindingthatallowingchildrentolistentomusicoreventohavetheTVonwhilestudyingishelpingimpr
直线一参谋型组织结构的优点是
A.非限制使用级B.自主使用级C.限制使用级D.特殊使用级具有明显或者严重不良反应,不宜随意使用的抗生素
根据企业所得税相关规定,下列确认销售商品收入实现的条件,错误的是()。
民族语言属于阿尔泰语系的是()。
17岁的高中生江某涉嫌犯罪被采取刑事强制措施,案件尚在审理阶段,所在学校以此为由取消了其学籍。该校做法()
甲、乙、丙三名学生参加一次考试,试题一共十道,每道题都是判断题,每题10分,判断正确得10分,判断错误得零分,满分100分。他们的答题情况如下:考试成绩公布后,三个人都是70分,由此可以推出,1~10题的正确答案是(
(2008下项管)去年底A公司大型企业集团的财务处经过分析发现,员工手机通话量的80%是在企业内部员工之间进行的,而90%的企业内部通话者之间的距离不到1000米。如果能引入一项新技术降低或者免掉内部员工通话费,这对集团来说将能节省很大一笔费用,对集团的发
最新回复
(
0
)