首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且A= β1=(0,1,一1)T,β2=(a, 2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
已知A,B为三阶非零矩阵,且A= β1=(0,1,一1)T,β2=(a, 2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求 (Ⅰ)a,b的值; (Ⅱ)求Bx=0的通解。
admin
2017-01-21
30
问题
已知A,B为三阶非零矩阵,且A=
β
1
=(0,1,一1)
T
,β
2
=(a, 2,1)
T
,β
3
=(b,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且Ax=β
3
有解。求
(Ⅰ)a,b的值;
(Ⅱ)求Bx=0的通解。
选项
答案
(Ⅰ)由B≠0,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是|β
1
,β
2
,β
3
|=[*] 解得a=3b。 由Ax=β
3
有解可知,线性方程组Ax=β
3
的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 [*] 所以b=5,a=3b=15。 (Ⅱ)因为B≠0,所以r(B)≥1,则3—r(B)≤2。又因为β
1
,β
2
是Bx=0的两个线性无关的解,故3—r(B)=2,所以β
1
,β
2
是B=0的一个基础解系,于是Bx=0的通解为 x=k
1
β
1
+k
2
β
2
,其中k
1
,k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/FmH4777K
0
考研数学三
相关试题推荐
已知线性方程组(I)a,b为何值时,方程组有解?(Ⅱ)方程组有解时,求出方程组的导出组的一个基础解系;(Ⅲ)方程组有解时,求出方程组的全部解.
设矩阵则A与B().
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
将函数y=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设A,B为两个随机事件,且P(A)=1/4,P(B丨A)=1/3,P(A丨B)=1/2,令Z=X2+Y2的概率分布.
微分方程dy/dx=y/x-1/2(y/x)3满足y丨x=1=1的特解为y=_________.
微分方程y"+y=cosx的一个特解的形式为y"=().
微分方程2x2y’=(x+y)2满足定解条件y(1)=1的特解是__________.
随机试题
维生素K参与下列哪些凝血因子的合成
Whatwastheoriginoftheoilwhichnowdrivesourmotorcarsandaircraft?Scientistsare【C1】______aboutthe【C2】______ofcoal,
甲状腺内孤立的、无触痛性、不规则的硬结节最可能的是
A.头痛B.眩晕C.两者均可D.两者均不可半夏白术天麻汤可治疗
编制建设工程勘察、设计文件,应当以下列一些规定为依据,其中()不正确。
通过两种测量手段测得某管道中液体的压力和流量信号如图中的曲线1和曲线2所示,由此可以说明()。
随着社会主义市场经济体制的建立和完善,人力资源逐步走向()配置。
对对联。上联:诚实守信立根本下联:__________
J.Martin方法应用逐步求精自顶向下分层规划,以下不属于规划内容的是
下面哪一项不是文件系统的功能( )。
最新回复
(
0
)