首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α. 证明:(I)矩阵B=(α,Aα,A4α)可逆; (Ⅱ)BTB是正定矩阵.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α. 证明:(I)矩阵B=(α,Aα,A4α)可逆; (Ⅱ)BTB是正定矩阵.
admin
2015-04-30
80
问题
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A
2
α线性无关,且A
3
α=3Aα一2A
2
α.
证明:(I)矩阵B=(α,Aα,A
4
α)可逆;
(Ⅱ)B
T
B是正定矩阵.
选项
答案
(Ⅰ)由于A
3
α=3Aα一2A
2
α,故 A
4
α=3A
2
α一2A
3
α=3A
2
α一2(3Aα一2A
2
α)=7A
2
α一6Aα. 若k
1
α+k
2
Aα+k
3
A
4
α=0,即k
1
α+k
2
Aα+k
3
(7A
2
α一6Aα)=0, 亦即k
1
α+(k
2
—6k
3
)Aα+7k
3
A
2
α=0,因为α,Aα,A
2
α线性无关,故 [*] 所以,α,Aα,A
4
α线性无关,因而矩阵B可逆. (Ⅱ)因为(B
T
B)
T
=B
T
(B
T
)
T
=B
T
B,故B
T
B是对称矩阵.又[*],由于矩阵B可逆,恒有Bx≠0,那么恒有x
T
(B
T
B)x=(Bx)
T
(Bx)>0,故二次型x
T
(B
T
B)x是正定二次型,从而矩阵B
T
B是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/GFU4777K
0
考研数学三
相关试题推荐
材料1当前,人类正在经历第二次世界大战结束以来最严重的全球公共卫生突发事件,新冠肺炎疫情仍在全球蔓延,我国面临多重疾病负担并存、多重健康影响因素交织的复杂状况,特别是突发急性传染病传播迅速、波及范围广、危害巨大,同时人民群众多层次多样化健康需求持
2021年3月,教育部等六部门共同印发《义务教育质量评价指南》。根据该评价指南,下列说法错误的有()。①义务教育质量评价包括学校、学生两个层面②严控考试次数,不公布考试成绩和排名③以升学指标评价学校、校长和
实现“两个一百年”奋斗目标、走向中华民族伟大复兴中国梦的“路线图”是()。
2022年6月,中国科学家团队研制完成世界首幅()月球全月地质图。月球地质图系统表达了月壳表面地层、构造、岩性和年代学等方面的综合地质信息,反映了月球岩浆作用、撞击事件、火山活动等演化过程。
依据《民法典》的规定,相互有继承关系的几个人在同一事件中丧生,不能确定死亡先后时间的,推定()。
提高个人所得税起征点,增加子女教育、大病医疗等专项费用扣除,合理减负,这一举措是为了()。
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
将函数分别展开成正弦级数和余弦级数.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
求下列极限:
随机试题
(2013年)根据2013年春季广交会传出的信息,我国很多从事加工贸易的企业在人民币对外币持续升值的情况下,不敢接来自外商的长期订单。这是因为,如果接下外商的订单,当未来对外商交货并结汇时,如果人民币对外币升值,我国企业在将收入的外币兑换为人民币时,兑换到
产品质量
何谓会阴及会阴体?有何临床意义?
小脑幕切迹疝最典型的表现是()
对症治疗目的是消除致病因子。()
A单位向市规划局申领建设工程规划许可证。规划局超过法定时限未作出任何决定。A单位向法院提起行政诉讼。规划局经传票传唤,未派人出庭参加诉讼。审理期间,规划局作出了颁证决定。对此,下列哪些选项是正确的?()
()是建设项目环境影响评价工作的灵魂。
总监理工程师的职责包括()。
报告可以从不同的角度分成各种类型,一般按照报告的写作意图可分为()。
若运行时给变量x输入12,则以下程序的运行结果是()。main(){intx,y;scanf("%d",&x);y=x>12?x+10:x-12;printf("%d\n",y);}
最新回复
(
0
)