首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x))在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P=>Q表示由性质P可推出性质Q,则有 ( )
考虑一元函数f(x)的下列4条性质: ①f(x)在[a,b]上连续; ②f(x)在[a,b]上可积; ③f(x))在[a,b]上可导; ④f(x)在[a,b]上存在原函数. 以P=>Q表示由性质P可推出性质Q,则有 ( )
admin
2020-01-15
98
问题
考虑一元函数f(x)的下列4条性质:
①f(x)在[a,b]上连续;
②f(x)在[a,b]上可积;
③f(x))在[a,b]上可导;
④f(x)在[a,b]上存在原函数.
以P=>Q表示由性质P可推出性质Q,则有 ( )
选项
A、①=>②=>③.
B、③=>①=>④.
C、①=>②=>④.
D、④=>①=>③.
答案
B
解析
因可导必连续.连续函数必存在原函数,故B正确.
A是不正确的.虽然由①(连续)可推出②(可积),但由②(可积)推不出③(可导).例如f(x)=|x|在[-1,1]上可积,且∫
-1
1
|x|dx=2∫
0
1
xdx=1,但|x|在x=0处不可导.
C是不正确的.由②(可积)推不出④(存在原函数),例如
在[-1,1]上可积,且
∫
-1
1
f(x)dx=∫
-1
0
(-1)dx+∫
0
1
1dx=-x|
-1
0
+x
0
1
=-1+1=0.
但f(x)在[-1,1]上不存在原函数.因为如果存在原函数F(x),那么只能是F(x)=|x|+C的形式,而此函数在x=0处不可导,在区间[-1,1]上它没有做原函数的“资格”.
D是不正确的.因为由④(存在原函数)推不出①(函数连续).例如:
它存在原函数
可以验证Fˊ(x)=f(x),但f(x)在x=0处并不连续,即存在原函数可以不连续.[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/GHA4777K
0
考研数学二
相关试题推荐
设,且A,B,X满足(E—B—1A)TBTX=E,则X—1=______。
e6
设f(x)在[0,1]上连续,且=_______
椭圆2x2+y2=3在点(1,一1)处的切线方程为________.
设y=y(χ)过原点,在原点处的切线平行于直线y=2χ+1,又y=y(χ)满足微分方程y〞-6y′+9y=e3χ,则y(χ)=_______.
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是_______.
设y=y(x)由参数方程确定,则=__________,=__________,y=y(x)在任意点处的曲率K=_________。
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20?
设b>a>0,证明:
由y=2x的图形作下列函数的图形:(1)y=3×2x(2)y=2x+4(3)y=-2x(4)y=2-x
随机试题
为()婴幼儿选择图书时,图书应没有背景,只有人物的动态和表情。
领导者素质、才能、知识及胆略等的综合反映是指()
杨先生,今晨因急性心肌梗死收入ICU,立即给予了心电监护和氧气吸入,神清,痛苦面容,他正承担着国家重点科研攻关项目。促进该患者舒适的首要措施是
女性,59岁。被诊断急性胰腺炎。患者发生休克时.下列哪项描述不正确
急性菌痢的基本病变为
孙中山建立的兴中会的纲领是()。
职业道德培养的首要环节是()。
某年的3月份共有5个星期三,并且第一天不是星期一,最后一天不是星期五,则该年的3月15日是()。
论述当代学制改革的趋势。
CreativeDestructionofHigherEducationA)Highereducationisoneofthegreatsuccessesofthewelfarecountry.Whatwasonce
最新回复
(
0
)