首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 微分方程y"一4y′+8y=e2x(1+cos2x)的特解可设为y*=( ).
[2017年] 微分方程y"一4y′+8y=e2x(1+cos2x)的特解可设为y*=( ).
admin
2019-05-10
57
问题
[2017年] 微分方程y"一4y′+8y=e
2x
(1+cos2x)的特解可设为y
*
=( ).
选项
A、Ae
2x
+e
2x
(Bcos2x+Csin2x)
B、Axe
2x
+e
2x
(Bcos2x+Csin2x)
C、Ae
2x
+xe
2x
(Bcos2x+Csin2x)
D、Axe
2x
+xe
2x
(Bcos2x+Csin2x)
答案
C
解析
由题设可知,特征方程为λ
2
一4λ+8=0,特征值为λ
1,2
=2±2i,又原方程可分解为两个非齐次方程:y"一4y′+8y=e
2x
和y"一4y′+8y=e
2x
cos2x,可知第一个方程的特解为Ae
2x
,第二个方程的特解为xe
2x
(B cos2x+Csin2x),故方程y"一4y′+8y=e
2x
(1+cos2x)的特解形式为y
*
=Ae
2x
+xe
2x
(B cos2x+C sin2x).
仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/GNV4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
当χ→0时,下列无穷小中,哪个是比其他三个更高阶的无穷小().
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
求函数z=χ2+2y2-χ2y2在D={(χ,y)|χ2+y2≤4,y≥0}上的最小值与最大值.
求微分方程yy〞=y′2满足初始条件y(0)=y′(0)=1的特解.
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
I(χ)=在区间[-1,1]上的最大值为_______.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
随机试题
政治文化结构的三个层次包括()
ItzhakPerlmanIn1967and1968,Perlmanwenteven【C1】______(far)withperformancesin50Americancitiesandtripsabroad.T
患儿,男,6岁。发热、咳嗽、咳痰6天。查体:体温39.6℃,呼吸24次/min,肺部听诊有少量湿啰音。痰液黏稠,不易咳出。诊断为金黄色葡萄球菌肺炎。以下哪项护理措施最不适于该患儿
急性白血病化疗诱导缓解后病人出现头痛、呕吐、视力障碍甚至瘫痪,最可能是发生了
中介服务费必须由中介服务机构统一收取,并给缴费人开具发票或收据。()
影响投资风险承受度的因素有( )。Ⅰ.年龄Ⅱ.时间Ⅲ.理财目标弹性Ⅳ.个人主观的风险偏好
国际资本流动可以有不同的分类,按照资本所有者的性质,可以将其分为( )。
根据所给图形、文字资料回答问题。在2008年8月8日至24奥运会期间,北京市的空气质量不仅天天达标,而且有10天达到一级,全面兑现了对奥运会空气质量的承诺。下图是2008年1~8月北京市大气质量检测情况,图中一、二、三、四级是空气质量等级,一级空
30年期限,10%票面利率的债券面值是100元,目前债券售价98元,那么债券收益率应该()。(清华大学金融学综合2015年)
攻击者不能占用所有资源而阻碍授权者的工作,这是信息安全中的()。
最新回复
(
0
)