首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
admin
2016-05-31
69
问题
设矩阵A=
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化.
选项
答案
矩阵A的特征多项式为 [*] 如果λ=2是单根,则λ
2
-8λ+18+3a是完全平方,那么有18+3a=16,即a=[*] 则矩阵A的特征值是2,4,4,而r(4E-A)=r[*]=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化. 如果λ=2是二重特征值,则将λ=0代人λ
2
-8λ+18+3a=0,则有18+3a=12,即a=-2. 于是λ
2
-8λ+18-3a=(λ-2)(λ-6).则 矩阵A的特征值是2,2,6,而r(2E—A)=r[*]=1,故λ=2有两个线性无关的特征向量,从而A可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/GQT4777K
0
考研数学三
相关试题推荐
2020年4月17日,习近平总书记主持召开中央政治局会议,强调要坚持稳中求进工作总基调,指出稳是大局,必须确保疫情不反弹,稳住经济基本盘,兜住民生底线,要求在稳的基础上积极进取,在常态化疫情防控中全面推进复工复产达产,恢复正常经济社会秩序,培育壮大新的增长
鸦片战争以清政府的失败而告终。1842年8月29日,清政府派钦差大臣耆英、伊里布与英国签订了中国近代史上第一个不平等条约《南京条约》。接着,1843年10月,签订了中英《虎门条约》。美国、法国等西方列强趁火打劫,逼迫清政府签订不平等条约,如1844年7月签
材料13月25日,习近平总书记主持召开中央政治局常委会会议。会议认为,经过全国上下和广大人民群众艰苦努力,疫情防控取得阶段性重要成效,经济社会秩序加快恢复,成绩来之不易。当前,国内外疫情防控和经济形势正在发生新的重大变化,境外疫情呈加速扩散蔓延态势,世界
适应新时代党和国家发展新要求,党的十九届二中全会把“中国共产党领导是中国特色社会主义最本质的特征”写入宪法,是为了()。
国歌被誉为国家的第一声音,需要每一个公民用心去呵护。十二届全国人大常委会第二十八次会议对国歌法草案进行了初审。草案明确了七类应当奏唱国歌的场合,明确了国歌奏唱的礼仪,同时规定了不得在私人丧事活动等不适宜的场合奏唱、播放国歌等负面清单,及相应的处罚措施,这一
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
设A是n×m矩阵,B是m×n矩阵,其中n
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
随机试题
患者进行肾静态显像,以下哪一项是不正确的
女,8岁。食冷饮时左下后牙感到酸痛2周,无自发痛史,检查发现左下第一磨牙颊面深龋,龋蚀范围稍广,腐质软而湿润,易挖除,但敏感。测牙髓活力同正常牙,叩诊(一)。首次就诊时,对该患牙应做的处理为
资产的特征不包括()。
43,36,30,25,18,12,()
女青年甲明知自己的男友乙杀了人,而帮助乙将杀人的匕首藏至自家的衣柜内并帮乙洗干净血衣。甲的行为
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为______.
Whatdoesitmeantorelax?Despite【C1】______thousandsoftimesduringthecourseofourlives,【C2】______havedeeplyconsidered
Thedaywasended—quitesuccessfully,sofarassheknew.TheTrusteesandthevisitingcommitteehadmadetheirrounds,andrea
A、Tomorrowmorning.B、OnThursdayafternoon.C、At3pmthisafternoon.D、Twohoursago.CWhattimeisthistrainleaving,John?
A、Findasuitablejob.B、Workinashoppingmall.C、Starthisownbusiness.
最新回复
(
0
)