首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(18)设A为3阶矩阵,α1,α2,α3为线性无关的向量组.若Aα1=2α1+α2+α3,Aα2=α2+2α3,Aα3=-α2+α3,则A的实特征值为_______.
(18)设A为3阶矩阵,α1,α2,α3为线性无关的向量组.若Aα1=2α1+α2+α3,Aα2=α2+2α3,Aα3=-α2+α3,则A的实特征值为_______.
admin
2019-03-08
93
问题
(18)设A为3阶矩阵,α
1
,α
2
,α
3
为线性无关的向量组.若Aα
1
=2α
1
+α
2
+α
3
,Aα
2
=α
2
+2α
3
,Aα
3
=-α
2
+α
3
,则A的实特征值为_______.
选项
答案
2
解析
将题给的关系式写成矩阵形式:
A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
]
记矩阵P=[α
1
,α
2
,α
3
],则因α
1
,α
2
,α
3
线性无关,知矩阵P可逆,从而有
P
-1
AP=
=B.
上式表明矩阵A与矩阵B是相似的,而相似矩阵有相同的特征值,容易求出矩阵B的实特征值是2,因此矩阵A的实特征值是2.
转载请注明原文地址:https://kaotiyun.com/show/GZj4777K
0
考研数学二
相关试题推荐
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设f(χ)在[0,b]可导,f′(χ)>0(χ∈(0,b)),t∈[0,b],问t取何值时,图4.10中阴影部分的面积最大?最小?
设f(χ)在(-∞,+∞)连续,存在极限f(χ)=A及f(χ)=B.证明:(Ⅰ)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(χ)在(-∞,+∞)有界.
求下列旋转体的体积V:(Ⅰ)由曲线χ2+y2≤2χ与)y≥χ确定的平面图形绕直线χ=2旋转而成的旋转体;(Ⅱ)由曲线y=3-|χ2-1|与戈轴围成封闭图形绕直线y=3旋转而成的旋转体.
设a,b,c为实数,求证:曲线y=eχ与y=aχ2+bχ+c的交点不超过三个.
微分方程(y+x3)dx一2xdy=0满足的特解为__________。
设函数f(x)=x∈[0,1].定义函数列:f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn一1(x)),…记Sn是由曲线y=fn(x),直线x=1及x轴所围成平面图形的面积,求极限Sn.
y=2x的麦克劳林公式中xn项的系数是________.
设f(x),g(x)是连续函数,=_________。
(1997年试题,六)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a取何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
随机试题
红细胞大量破坏时主要通过释放下列哪项物质引起DIC
5岁患儿突发寒战、高热,左大腿下端深压痛,患肢不敢动,白细胞总数升高。最有意义的诊断方法是
伤暑,发热头痛,恶寒无汗,口渴面赤,胸闷不舒,舌苔白腻,脉浮数者,治宜选用
手阳明大肠经的原穴是
A、维生素K3B、维生素CC、维生素D2D、维生素B6E、维生素E分子结构为甲萘醌磺酸钠的是()
西方戏剧求逼真,说白动作,完全要逼近真实;而中国戏剧却求与真实隔开一层,达到教人放松、教人解脱的效果。中西方戏剧在世界整个文化体系中,各有各的特点与意义。在五四运动时。一般人提倡西方剧,尤其如易卜生,说他能在每一本戏剧中提出一人生问题来。其实中国
监理大纲评审时应重点评审监理大纲的()。
使用铁路长大货物车(D型)装运货物时,应核收()。
A公司为增值税一般纳税人,不动产、动产适用的增值税税率分别为11%、17%。2017年A公司建造一个生产车间,包括厂房和一条生产线两个单项工程。厂房造价为130万元,生产线安装费用为50万元。A公司采用出包方式出包给甲公司。2017年有关资料如下:资料一
为了鼓励市民积极参与志愿者活动,某市出台一项政策,为优秀志愿者提供报酬和慰问品,有人认为这有违志愿者服务的理念。你怎么看?
最新回复
(
0
)