设二次型f(x1,x2,x3)=x12一x22+2ax1,x3+4x2,x3的负惯性指数为1,则a的取值范围是________。

admin2015-09-14  39

问题 设二次型f(x1,x2,x3)=x12一x22+2ax1,x3+4x2,x3的负惯性指数为1,则a的取值范围是________。

选项

答案[一2,2]

解析 对f配方,可得
f=(x1+ax3)2一(x2—2x3)2+(4一a2)x32
于是f可经可逆线性变换

化成标准形
f=z12一z22+(4一a2)z32
若4一a2<0,则f的负惯性指数为2,不合题意;
若4一a2≥0,则f的负惯性指数为1.
因此,当且仅当4一a2≥0,即|a|≤2时,f的负惯性指数为1.
f的矩阵为

A的特征多项式为

设A的特征值为λ1,λ2,λ3,则f经正交变换可化成标准形
f=λ1y122y223y32λ1,λ2,λ3中为负的个数即,的负惯性指数,且由特征值的性质知
λ1λ2λ3=det(A)=4一a2
由于f既可取到正值、又可取到负值,所以λ1,λ2,λ3中至少有一个为正的,也至少有一个为负的。
λ1,λ2,λ3的符号只有下列3种可能:
(1)λ1λ2λ3=0,此时有λ3=0,λ1,2=
即f的正、负惯性指数都为1,符号题意。
(2)λ1λ2λ3=<0,此时λ1,λ2,λ3中有一个为负的,2个为正的(不可能3个都为负,否则与f可取到正值矛盾),符号题意。
(3)λ1,λ2,λ3>0,此时λ1,λ2,λ3中3个都为正的,或者2个为负的,1个为正的,都不符号题意。
综上可知,当且仅当λ1λ2λ3=4一a2≤0,即|a|=2时,符号题意。
转载请注明原文地址:https://kaotiyun.com/show/GeU4777K
0

相关试题推荐
随机试题
最新回复(0)