首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且试证:在(0,π)内至少存在两个不同的点ξ1,ξ2,使得f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且试证:在(0,π)内至少存在两个不同的点ξ1,ξ2,使得f(ξ1)=f(ξ2)=0.
admin
2020-05-02
34
问题
设函数f(x)在[0,π]上连续,且
试证:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使得f(ξ
1
)=f(ξ
2
)=0.
选项
答案
方法一 令[*]0≤x≤π,则F(0)=F(π)=0.又因为 [*] 根据已知条件[*]可得[*]再由积分中值定理知:至少存在一点ξ∈[0,π],使得F(ξ)sinξ=0.如果仅当ξ=0或π时,使得F(ξ)sinξ0,那么由F(x)sinx在(0,π)内的连续性知,F(x)sinx在(0,π)内恒正或恒负.不妨设F(x)sinx>0,x∈(0,π),即[*]与已知条件矛盾.因此,存在一点ξ∈(0,π),使得F(ξ)sinξ=0,进而F(ξ)=0. 由上式得F(0)=F(π)=F(ξ)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔中值定理,可得:至少存在点ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使f(ξ
1
)=f(ξ
2
)=0. 方法二 由[*]知,存在ξ
1
∈(0,π)使得f(ξ
1
)=0,否则,在(0,π)内f(x)恒为正或恒为负,均与[*]矛盾. 若在(0,π)内f(x)=0仅有一个实根x=ξ
1
,则由[*]可知,f(x)在区间(0,ξ
1
)和(ξ
1
,π)内异号,不妨设在(0,ξ
1
)内f(x)>0,在(ξ
1
,π)内f(x)<0.于是再由[*]及cosx在[0,π]上的单调性,知 [*] 又 [*] 与上式矛盾.因此,在(0,π)内除ξ
1
外,f(x)=0在(0,兀)内还有一个实根x=ξ
2
,故在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使得f(ξ
1
)=f(ξ
2
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Htv4777K
0
考研数学一
相关试题推荐
若f(x,y)为关于z的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有=______________.
连续函数f(x)满足f(x)=3∫0xf(x一t)dt+2,则f(x)=________.
设随机变量X的密度函数(0<a<b),且EX2=2,则
随机变量(X,Y)的联合密度函数为f(x,y)=.求常数A;
设A是n阶实对称矩阵,且A2=0,证明A=0.
设离散型随机变量X只取-1,2,π三个可能值,取各相应值的概率分别是a2,一a与a2,求X的分布函数.
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X—E(X)|≥2}≤_________.
设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,—∞<x<+∞,则λ的最大似然估计量=________。
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:(1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面
随机试题
失血性休克可先经静脉在45分钟内快速滴注等渗盐水或平衡盐溶液()
全胃肠外营养的适应证是【】
一致率
TVOC是指
诊断癔症最重要的是
在基坑验槽时,对于基底以下不可见部位的土层,要先辅以配合观察的方法是()。
银行为提高贷款的安全性,通常希望借款人保持较低的资产负债率。()
常用的预测经济周期波动的方法有( )。
下列商品零售企业(单位)类型中,2012年5月同比增长量最多的是()。
有人说,20世纪30年代的经济危机给资本主义国家提供了一次机遇,其含义是()。
最新回复
(
0
)