首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导. (I)若f(a)=0,f(b)
设f(x)∈C[a,b],在(a,b)内二阶可导. (I)若f(a)=0,f(b)
admin
2017-12-21
38
问题
设f(x)∈C[a,b],在(a,b)内二阶可导.
(I)若f(a)=0,f(b)<0,f’+(a)>0.证明:存在ξ∈(a,b),使得f(ξ)f"(ξ)+f’
2
(ξ)=0.
(Ⅱ)若
证明:存在η∈(a,b),使得f"(η)=f(η).
选项
答案
(I)因为f'
+
(a)>0,所以存在c∈(a,b),使得f(c)>f(a)=0,因为f(c)f(b)<0,所以存在x
0
∈(c,b),使得f(x
0
)=0.因为f(a)=f(x
0
)=0,由罗尔定理,存在x
1
∈(a,x
0
),使得f'(x
1
)=0. 令φ(x)=f(x)f'(x),由φ(a)=φ(x
1
)=0,根据罗尔定理,存在ξ∈(a,x
1
)[*](a,b),使得φ'(ξ)=0.而φ'(x)=f(x)f"(x)+f'
2
(x),所以f(ξ)f"(ξ)+f'
2
(ξ)=0. (Ⅱ)令[*]因为F(a)=F(b)=0,所以由罗尔定理,存在c∈(a,b),使得F'(c)=0,即f(c)=0. 令h(x)=e
x
f(x),由h(a)=h(c)=h(b)=0,根据罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h'(ξ
1
)=h'(ξ
2
)=0,则h'(x)=e
x
[f(x)+f'(x)],所以f(ξ
1
)+f'(ξ
1
)=0,f(ξ
2
)+f'(ξ
2
)=0. 再令G(x)=e
-x
[f(x)+f'(x)],由G(ξ
1
)=G(ξ
2
)=0,根据罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使得G'(η)=0,而G’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(η)=f(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/I2X4777K
0
考研数学三
相关试题推荐
=________
=________
设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(xn,0),计算
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2),并且f(x)在x=0处连续,证明:函数f(x)在任意点x0处连续.
设A是n阶实矩阵,将A的第i列与第j列对换,然后再将第i行和第j行对换,得到B,则A,B有()
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
设总体X的概率密度为试用样本X1,X2,…,Xn求参数α的矩估计和最大似然估计.
求下列极限.
设f(x)连续,且则().
设f(x)二阶连续可导,g(x)连续,且则().
随机试题
简述近代中国文化变革的历程。
下列选项说法错误的是()。
工程咨询业的特点有()等。
桥梁分类的方式很多,按主要承重结构所用的材料分有()。
施工组织设计应由()主持编制。
()是商业银行资本总额与风险加权资产的比值,反映的是一家商业银行的整体资本稳健水平。
被后人称为“兵仙”的是()。
CanadiansliketothinkthatalthoughtheyarethejuniorpartnerintheirtraderelationswiththeUnitedStates,the174billi
下面不属于按钮控件事件的是
HostilitytoGypsieshasexistedalmostfromthetimetheyfirstappearedinEuropeinthe14thcentury.TheoriginsoftheGyps
最新回复
(
0
)