首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导. (I)若f(a)=0,f(b)
设f(x)∈C[a,b],在(a,b)内二阶可导. (I)若f(a)=0,f(b)
admin
2017-12-21
63
问题
设f(x)∈C[a,b],在(a,b)内二阶可导.
(I)若f(a)=0,f(b)<0,f’+(a)>0.证明:存在ξ∈(a,b),使得f(ξ)f"(ξ)+f’
2
(ξ)=0.
(Ⅱ)若
证明:存在η∈(a,b),使得f"(η)=f(η).
选项
答案
(I)因为f'
+
(a)>0,所以存在c∈(a,b),使得f(c)>f(a)=0,因为f(c)f(b)<0,所以存在x
0
∈(c,b),使得f(x
0
)=0.因为f(a)=f(x
0
)=0,由罗尔定理,存在x
1
∈(a,x
0
),使得f'(x
1
)=0. 令φ(x)=f(x)f'(x),由φ(a)=φ(x
1
)=0,根据罗尔定理,存在ξ∈(a,x
1
)[*](a,b),使得φ'(ξ)=0.而φ'(x)=f(x)f"(x)+f'
2
(x),所以f(ξ)f"(ξ)+f'
2
(ξ)=0. (Ⅱ)令[*]因为F(a)=F(b)=0,所以由罗尔定理,存在c∈(a,b),使得F'(c)=0,即f(c)=0. 令h(x)=e
x
f(x),由h(a)=h(c)=h(b)=0,根据罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h'(ξ
1
)=h'(ξ
2
)=0,则h'(x)=e
x
[f(x)+f'(x)],所以f(ξ
1
)+f'(ξ
1
)=0,f(ξ
2
)+f'(ξ
2
)=0. 再令G(x)=e
-x
[f(x)+f'(x)],由G(ξ
1
)=G(ξ
2
)=0,根据罗尔定理,存在η∈(ξ
1
,ξ
2
)[*](a,b),使得G'(η)=0,而G’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(η)=f(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/I2X4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)在上服从均匀分布,则条件概率=________.
已知I(α)=,求积分∫-32(α)dα.
求不定积分
求差分方程yt+1+3yt=3t+1(2t+1)的通解。
设X1,X2,…,Xn为总体X的一个样本,设EX=μ,DX=σ2,试确定常数C,使一CS2为μ2的无偏估计.
设{xn}是数列.下列命题中不正确的是
求幂级数的和函数f(x)及其极值.
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
若则().
判断下列结论是否正确,并证明你的判断.若则存在δ>0,使得当0<|x-a|<δ时有界.
随机试题
当事人逾期不履行行政处罚决定的,作出处罚决定的行政机关可以采取每日按罚款数额的3%加处罚款。()
A、青霉素类B、戊巴比妥C、巴比妥D、妥布霉素E、药用炭与血浆蛋白结合率在20%~24%之间中度结合的药物是
每100ml口服补液盐中,碳酸氢钠的含量是()
此电脑租赁公司的广告属于()。电脑租赁公司不给学生姜远办理D型电脑的租赁手续的行为()。
非公开募集基金的募集环节的体现不包括()。
B注册会计师负责对K公司2印9年度财务报表进行审计。在测试K公司内部控制时,B注册会计师遇到下列事项,请代为做出正确的专业判断。B注册会计师应当考虑采取下列措施来增强某些审计程序不被管理层预见或事先了解()。
许慎在《说文解字》中对“形声”所下的定义是:_______,_______。
根据学习的定义,下列属于学习的现象是()
在下列情况中不能适用假释的有()。
设总体X服从正态分布N(0,σ2),而X1,X2,…,X15是取自总体X的简单随机样本,则服从____________分布,分布参数为____________.
最新回复
(
0
)