首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
admin
2016-10-26
51
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+kα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A一KE左乘有 k
1
(A—kE)α
1
+k
2
(A—kE)α
2
+k
3
(A—kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A一KE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代入得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A—kE)α
1
=0, (A—kE)α
2
=lα
1
, (A—kE)α
3
=lα
2
.
这启发我们应用A—kE左乘来作恒等变形.
转载请注明原文地址:https://kaotiyun.com/show/ILu4777K
0
考研数学一
相关试题推荐
[*]
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
判断下列反常积分的敛散性
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.若收到字符为ABCA,问被传送字符为AAAA的概率是多大?
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.求收到字符ABCA的概率;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设Z;=Xi+Xn+i=1,2,…,n),为从总体Z中取出的样本容量为n,的样本.则E(Zi)=E(Xi)+E(Xn+i)=μ+μ=2μD(Zi)=D(Xi+Xn+i)=D(xi)+D(Xn+i)(Xi与Xn+i相互独立)=σ2+σ2=2σ2∴Z-N
设随机变量X和Y的联合分布是正方形G={(x,y):1≤x≤3,1≤y≤3}上的均匀分布,试求随机变量U=|X—Y|的概率密度p(u).
(2009年试题,16)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记s1=.求s1与s2的值.
随机试题
抓斗挖泥船分层的厚度应根据()等因素确定。
Hehasjustarrived,buthetalksasifhe_____allaboutthat.
《临证指南医案》所谓“阳气之变动”指的是()(2011年第13题)
癫痫样波包括下列几项,但除外其中的
关于煅淬法叙述正确的是()
女,30岁,甲状腺手术后声音嘶哑,是由于
某公司购入不需要安装的机器设备一台,买价为118000元,另支出包装费2000元,运杂费5000元。全部款项已用银行存款支付,应作会计分录为()。
由于天气干旱,池塘的水每天以均匀的速度减少。现在池塘的水可供20只羊饮用5天,或供16只羊饮用6天,那么,现在水量可供11只羊饮用()天。
简述活动课程的特点及优缺点。
某仓库失窃,4个保管员涉嫌被传讯。4人的口供如下:甲:我们4人都没作案。乙:我们中有人作案。丙:乙和丁至少有人没作案。丁:我没作案。如果4人中有2人说的是真话,有2人说的是假话,那么以下哪项断定成立?
最新回复
(
0
)