首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
admin
2016-10-26
66
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+kα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A一KE左乘有 k
1
(A—kE)α
1
+k
2
(A—kE)α
2
+k
3
(A—kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A一KE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代入得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A—kE)α
1
=0, (A—kE)α
2
=lα
1
, (A—kE)α
3
=lα
2
.
这启发我们应用A—kE左乘来作恒等变形.
转载请注明原文地址:https://kaotiyun.com/show/ILu4777K
0
考研数学一
相关试题推荐
[*]
7
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
设一盒子中有5个球,编号分别为1,2,3,4,5.如果每次等可能地从中任取一球,记录其编号后放回,求3次取球得到的最大编号X的概率分布.如果一次从袋中任取3个球,求这3个球中最大编号y的概率分布.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
差分方程yt+1-yt=t2t的通解为_______.
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
已知A为n阶方阵,r(A)=n-3,且α1,α2,α3是AX=0的三个线性无关的解向量,则()为AX=0的基础解系.
(2009年试题,16)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记s1=.求s1与s2的值.
随机试题
注册会计师执行的下列各项业务中,应保持独立性的有()。
容量分析法相较仪器分析方法的优点是
资本家为了就近解决在其工厂中工作的工人的居住问题,从而提高工人的生产能力而由资本家出资建设、管理的小型城镇是()
建设工程监理的质量控制在设计上的主要任务是( )。
已知f(x)=ax2+bx是定义在(a-3,2a)上的偶函数,则a+b的值为().
因侦查犯罪的需要,必要时,按照国家有关规定,可以优先使用机关、团体、企业事业组织和个人的交通工具、通信工具、场地和建筑物。()
A、 B、 C、 D、 D每组第一个图形是立体图形,第二个图形是这个立体图形的左视图,第三个图形是这个立体图形的俯视图。
按照金融交易的交割期限,可以将金融市场划分为货币市场和资本市场。()(广东财经大学2013真题)
中国民间舞秧歌中的“大场”通常用在舞蹈的()。
MostAmericansconsiderthemselvesfriendlypeople.FolksinthesouthernUnitedStates,inparticular,【B1】______entertainingg
最新回复
(
0
)