首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
admin
2016-10-26
59
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=kα
1
,Aα
2
=lα
1
+kα
2
,Aα
3
=lα
2
+kα
3
,l≠0,证明α
1
,α
2
,α
3
线性无关.
选项
答案
若k
1
α
1
+k
2
α
2
+k
3
α
3
=0,用A一KE左乘有 k
1
(A—kE)α
1
+k
2
(A—kE)α
2
+k
3
(A—kE)α
3
=0, 即 k
2
lα
1
+k
3
lα
2
=0, 亦即k
2
α
1
+k
3
α
2
=0. 再用A一KE左乘,可得k
3
α
1
=0. 由α
1
≠0,故必有k
3
=0,依次往上代入得k
2
=0及k
1
=0,所以α
1
,α
2
,α
3
线性无关.
解析
对k
1
α
1
+k
2
α
2
+k
3
α
3
=0,如何证明组合系数k
1
=k
2
=k
3
=0呢?要作恒等变形就应仔细分析已知条件,Aα
i
的条件其实就是
(A—kE)α
1
=0, (A—kE)α
2
=lα
1
, (A—kE)α
3
=lα
2
.
这启发我们应用A—kE左乘来作恒等变形.
转载请注明原文地址:https://kaotiyun.com/show/ILu4777K
0
考研数学一
相关试题推荐
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{丨x-μ丨
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处在曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在(1,1)处在切线与x轴平行.
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设计算行列式丨A丨;
一根输水管道的最高点在水面下方5m深处,管道截面为圆形,直径为80cm,有一个与管道截面大小一样的铅直闸门将管道口挡住,求闸门上所受的水的静压力。
随机试题
在土地登记查询中,()是对查询人的具体要求。
在工程网络计划中,关键工作的特点是()。
建筑安装工程人工费包括()。
在合同审核的环节,规范的操作应该包括()。
甲公司是一家上市公司,以生产农药和化肥为主业,已发行股份总额为26000万股。2011年甲公司成功发行3年期的公司债券5000万元,截至2012年12月31日,甲公司经审计的相关财务资料如下:2013年2月,甲公司召开股东大会讨论董事会提交的两
劳动者患病,(),不能从事原工作,也不能从事用人单位另行安排的工作的,用人单位可以解除劳动合同。
明朝的会审制度有()。
下列程序段的执行结果为______。I=0ForG=10To19Step3I=I+1NextGPrintI
Impatiencecharacterizesyoungintellectualworkers.Theywanttomaketheirmark【31】______.Soit’simportanttoget【32】______t
ToallAmericans,anotherbasic(36)______intheirconstitutionistheBillofrights,adoptedin1971.Thisconsistsof10ver
最新回复
(
0
)