首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ2…,Aξn-1=ξn,Aξn=0,且ξn≠0. (Ⅰ)证明ξ1,ξ2,…,n线性无关; (Ⅱ)求Aχ=0的通解; (Ⅲ)求出A的全部特征值和特
设A是n(n>1)阶方阵,ξ1,ξ2,…,ξn是n维列向量,已知Aξ1=ξ2,Aξ2=ξ2…,Aξn-1=ξn,Aξn=0,且ξn≠0. (Ⅰ)证明ξ1,ξ2,…,n线性无关; (Ⅱ)求Aχ=0的通解; (Ⅲ)求出A的全部特征值和特
admin
2016-03-16
77
问题
设A是n(n>1)阶方阵,ξ
1
,ξ
2
,…,ξ
n
是n维列向量,已知Aξ
1
=ξ
2
,Aξ
2
=ξ
2
…,Aξ
n-1
=ξ
n
,Aξ
n
=0,且ξ
n
≠0.
(Ⅰ)证明ξ
1
,ξ
2
,…,
n
线性无关;
(Ⅱ)求Aχ=0的通解;
(Ⅲ)求出A的全部特征值和特征向量,并证明A不可对角化.
选项
答案
(Ⅰ)设k
1
ξ
1
+k
2
ξ
2
+…+k
n
ξ
n
=0,依次在等式两边左乘A,A
2
,…,A
n-2
,A
n-1
,分别得 k
1
ξ
2
+k
2
ξ
3
+…+k
n-1
ξ
n
=0, k
1
ξ
3
+k
2
ξ
4
+…+k
n-1
ξ
n
=0, …… k
1
ξ
n-1
+k
2
ξ
n
=0 k
1
ξ
n
=0, 因为ξ
n
≠0,故k
1
=0,并依次回代得k
2
=…αk
n-1
=k
n
=0,所以ξ
1
,ξ
2
,…,ξ
n
线性无关. (Ⅱ)由题意知 [*] 又因为ξ
1
,ξ
2
,…,ξ
n
线性无关,故r(A)=n-1,所以Aχ=0的基础解系中只有一个解向量,而Aξ
n
=0,ξ
n
≠0,因此ξ
n
为Aχ=0的一个基础解系,所以Aχ=0的通解为kξ
n
,k为任意常数. (Ⅲ)记P=(ξ
1
,ξ
2
,…,ξ
n
),则P可逆,且 [*] 由此可得A的特征值λ
1
=λ
2
…λ
n
=0,其特征向量为kξ
n
(k≠0),从而A的属于特征值0的线性无关的特征向量仅有一个,故A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/IgbD777K
0
考研数学二
相关试题推荐
毛泽东思想活的灵魂是() ①实事求是 ②党的建设 ③群众路线 ④独立自主
孔子提倡中庸之道的理论基础是()。
企业战略联盟是两个或两个以上的经济实体(一般指企业,如果企业问的某些部门达成联盟关系,也适用此定义)为了实现特定的战略目标而采取的共担风险、共享利益的长期联合与合作协议。根据上述定义,下列属于企业战略联盟的是()。
2006年是“十一五”的开局之年。江苏省各级卫生部门在省委、省政府的领导下,紧紧围绕富民强省、“两个率先”目标,全面落实科学发展观,重点加强基层、基础工作,大力发展农村卫生、公共卫生、社区卫生,全面推进中医药、卫生监督、科技人才建设和卫生行风建设,各项工作
按照近代政治学理论观点,共和含义比较广泛,涵盖着民主概念。具体来说,共和国相对于君主国而言,凡是非君主制国家便是共和国,共和囤在历史上分成贵族共和国和民主共和国。应当说,这种政治理论观点可能适用于近代国家情况,但不合乎古代政治观念。共和国概念源于古罗马,在
两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积比是3:1,另一个瓶子中酒精与水的体积比是4:1,若把两瓶酒精溶液混合,则混合后的酒精和水的体积之比是多少?()
无论是现代游戏,还是传统游戏,都______出了一定的知识、社会和时代特征,同时也______了团结、多样性和包容的价值。但随着社会变迁和时代发展,很多有价值的传统游戏正在一代又一代的______中逐渐消逝。填入画横线部分最恰当的一项是:
已知x满足不等式22x—10.2x+16≤0,则f(x)=x+的最大值与最小值之差为()。
设f(χ)为[-a,a]上的连续的偶函数且f(χ)>0,令F(χ)=∫-aa|χ-t|f(t)dt..(Ⅰ)证明:F′(χ)单调增加.(Ⅱ)当χ取何值时,F(χ)取最小值?(Ⅲ)当F(χ)的最小值为f(a)-a2-1时,求函数f(χ).
设A=,B是三阶非零矩阵,且AB=0,则()
随机试题
关于建设工程工期的说法,错误的是()。
U/C矩阵中的功能名称位于()
肺的弹性阻力包括
A、正常细胞不均一性贫血B、正常细胞均一性贫血C、大细胞不均一性贫血D、小细胞不均一性贫血E、小细胞均一性贫血贫血患者MCV为90fl,MCH为30pg,MCHC为333g/L,RDW:23%,该患者贫血类型属于
A.温经汤B.丹栀逍遥散C.固阴煎D.膈下逐瘀汤E.固冲汤治疗痛经气滞血瘀证,宜选用的方剂是
鼓励长期卧床的心力衰竭患者在床上活动下肢,其主要目的是
对非实质性变更的接受,下列条件中使合同成立的有()。
我国商业银行的核心资本包括实收资本、资本公积、盈余公积、未分配利润、少数股权等。()
有人曾______“人工智能是个筐,什么都能往里装”,虽然______,但也说明了现状。通常,当解决问题需要推理、决策、理解、学习这类最基本的技能时,我们才认为它跟人工智能相关。常见的人工智能技术应用有指纹识别、人脸识别、机器翻译等。很多通过机械的计算和机
设四次曲线y=ax4+bx3+cx2+dx+f经过点(0,0),并且点(3,2)是它的一个拐点,过该曲线上点(0,0)与点(3,2)的切线交于点(2,4),则该四次曲线的方程为y=________.
最新回复
(
0
)