首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1),证明:存在满足0<ξ<η<1的ξ,η,使得f’(ξ)+f’(η)=0。
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1),证明:存在满足0<ξ<η<1的ξ,η,使得f’(ξ)+f’(η)=0。
admin
2017-11-30
87
问题
设f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=f(1),证明:存在满足0<ξ<η<1的ξ,η,使得f’(ξ)+f’(η)=0。
选项
答案
f(x)在[0,1]上连续,在(0,1)上可导,在[*]上分别使用拉格朗日中值定理,可知存在ξ∈[*],使得 [*] 由f(0)=f(1),可知(1)+(2)得,f’(ξ)+f’(η)=0。 故存在0<ξ<η<1,使得f(ξ)+f(η)=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/J9X4777K
0
考研数学三
相关试题推荐
设总体X~F(x,θ)=,样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设函数y=y(x)满足△y=△x+o(△x),且y(1)=1,则∫01y(x)dx=—一.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"(ξ)=3.
设f(x)在[a,b]是二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f(ξ)≥|f(a)一f(b)|.
设为了使f(x)对一切x都连续,求常数a的最小正值.
已知ξ=[1,1,一1]T是矩阵的一个特征向量.确定参数a,b及考对应的特征值λ;
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
已知X具有概率密度X1,X2,…,Xn为X的简单随机样本。求未知参数α的矩估计和最大似然估计.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
曲线的斜渐近线方程为________.
随机试题
肾交感神经节后纤维释放的去甲肾上腺素可调节
代谢性碱中毒的代偿中,哪项是恰当的
腺体鳞状上皮化生后发生恶性变,所形成的恶性瘤称为
最适于地面消毒皮肤
上市公司及其控股股东或实际控制人最近36个月内存在未履行向投资者作出的公开承诺的行为,不得公开发行证券。()
定势是一种消极的心理活动准备状态。()
外交家考虑问题显然不如法学家那么___________,也不如经济学家那样“___________”,能否就某一议题达成共识完全取决于国内政治力量的妥协和谈判桌上的临场发挥。至于最后谈判文本对本国福利的影响以及如何从法律上得以保证文本的执行,外交家们保留了
简述新闻本源和来源的区别。(中南财经政法大学,2008年)
Ibecameinterestedinwritingatanearlyage.Sowhenmyfourth-gradeteachertoldmeabouta【C1】________writer’sconference
Jason:Hi,Jane.Doyouhaveanychange?Ihavetomakeacallonthepayphone.Jane:______
最新回复
(
0
)