首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2019-02-23
53
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/JKM4777K
0
考研数学一
相关试题推荐
设f(μ)可导,y=f(x2)在x0=一1处取得增量△x=0.05时,函数增量△y的线性部分为0.15,则f’(1)=_________.
设f(x)连续,f(0)=1,令F(t)=f(x2+y2)dxdy(t≥0),求F’’(0).
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设A是m×n阶矩阵,B是n×m阶矩阵,则().
设A为n阶矩阵,k为常数,则(kA)*等于().
求二元函数f(x,y)=x2(2+y2)+ylny的极值.
设随机变量X1,X2,X3,X4独立同分布,且Xi~(i=1,2,3,4),求X=的概率分布.
设A从原点出发,以固定速度ν0沿y轴正向行驶,B从(x0,0)出发(x0<0),以始终指向点A的固定速度ν1朝A追去,求B的轨迹方程.
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
随机试题
给某患者静脉注射25%葡萄糖溶液100ml,患者顷刻尿量显著增加,测定尿糖为阳性,分析患者尿量增多的主要原因是
按照《建筑地基基础设计规范》(GB50007—2011),地基持力层承载力特征值由经验值确定时,下列哪些情况,不应对地基承载力特征值进行深宽修正?()
某企业月末编制试算平衡表时,因漏算一个账户,计算的月末借方余额合计为400000元,月末贷方余额合计为450000元,则漏算的账户()元。
产业结构政策的核心是()。
“三个代表”是一个完整统一的整体,请简述三者之间的辩证关系。
你们部门负责生产安全监察工作。你带队去一个企业检查工作。发现该企业存在严重的安全问题。企业负责人对你说,如果停产,企业的订单和职工工资会受到影响。如果是你,你该怎么处理?
水平放置的幼苗,经过一段时间根向下弯曲生长,其原因是__________。①重力作用,背离地面一侧生长素分布得少②光线作用,靠近地面一侧生长素分布得多③根对生长素反应敏感④根对生长素反应不敏感
设A=E-ααT,其中α为n维非零列向量.证明:当α是单位向量时A为不可逆矩阵.
(73)are essential for the protection of data.
A、Themanwondershowcriticswillreviewtheshow.B、Themanwillhelpthewomansellherpaintings.C、Thewomanisconfidenti
最新回复
(
0
)