首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2018-05-17
48
问题
设
且A~B.
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0得A,B的特征值为λ
1
=-1,λ
2
=-1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ=(0,-1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
12
=(0,1,1)
T
; 当λ=2时,由(2E-A)X=0得ξ
3
=(1,0,0)
T
,取P
1
=[*],则 P
1
-1
AP
1
=[*] 当λ=-时,由(-E-B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,(2E-B)X=0得η
3
=(0,0,1)
T
,取P
2
=[*],则 P
2
-1
BP
2
=[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jck4777K
0
考研数学二
相关试题推荐
设3阶矩阵A=,若A的伴随矩阵的秩等于1,则必有().
(2001年试题,十二)已知α1,α2,α3,α4是线性方程组Ax=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,讨论实数t满足什么关系时,β1,β2β3,β4,卢4也是.Ax=0的一个基础解系.
(2000年试题,一)曲线的斜渐近线方程为_________.
(2010年试题,9)三阶常系数线性齐次微分方程y’’’一2y’’+y’一2y=0通解为y=__________.
(2012年试题,一)设函数f(x,y)为可微函数,且对任意的x,y都有则使不等式f(x1,y1)>f(x2,y2)成立的一个充分条件是().
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4,线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
处的值为_______.
设f(x)连续,∫0xxf(x-t)dt=1-cosx,求
当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n=________.
随机试题
摩擦压力机有哪些优点?
在呼吸道感染流行时为防止交叉感染,接触病毒感染者应()
既能养心安神,又能收敛止汗,用于体虚多汗的药物是
下列是软膏水溶性基质的是
根据《中华人民共和国药品管理法实施条例》的规定,包装不符合规定的中药饮片,生产企业
通常以()作为蓄电池的放电电流。
环带法组装工艺仅可用于公称容积()的球罐。
中长期国债期货采取()报价法。
牙疼的睡不着觉。
Whatkindoffuseisusuallyfixedinathree-pinplug?
最新回复
(
0
)