首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
设且A~B. (1)求a; (2)求可逆矩阵P,使得P-1AP=B.
admin
2018-05-17
66
问题
设
且A~B.
(1)求a;
(2)求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为A~B,所以tr(A)=tr(B),即2+a+0=1+(-1)+2,于是a=0. (2)由|λE-A|=[*]=(λ+1)(λ-1)(λ-2)=0得A,B的特征值为λ
1
=-1,λ
2
=-1,λ
3
=2. 当λ=-1时,由(-E-A)X=0即(E+A)X=0得ξ=(0,-1,1)
T
; 当λ=1时,由(E-A)X=0得ξ
12
=(0,1,1)
T
; 当λ=2时,由(2E-A)X=0得ξ
3
=(1,0,0)
T
,取P
1
=[*],则 P
1
-1
AP
1
=[*] 当λ=-时,由(-E-B)X=0即(E+B)X=0得η
1
=(0,1,2)
T
; 当λ=1时,由(E-B)X=0得η
2
=(1,0,0)
T
; 当λ=2时,(2E-B)X=0得η
3
=(0,0,1)
T
,取P
2
=[*],则 P
2
-1
BP
2
=[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/Jck4777K
0
考研数学二
相关试题推荐
设3阶矩阵A=,若A的伴随矩阵的秩等于1,则必有().
(2008年试题,二)微分方程(y+x2e-x)dx一xdy=0的通解是__________.
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵.(1)证明:矩阵A-2E可逆;(2)若求矩阵A.
(2011年试题,三)①证明:对任意的正整数n,都有成立②设an=,证明数列{an}收敛.
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解.若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是对应的齐次方程的解,则
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
证明:(-1<x<1)
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T,(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
随机试题
言论自由属于我国公民的
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
急性胰腺炎手术指征是()。
中医“五轮学说”中,被称为“水轮”的是()。
场区高程控制网应布设成()、()或()。
采用边长25mm立方体试验样品试验时,在24h内出现自燃的物质属于()自燃物质。
建筑是凝固的诗:_________;_________。诗有古诗和现代诗,建筑也有古今之分,泾渭分明。在缓缓流逝的时间长河中,总有一些记忆像卵石般沉淀下来,_________,_________。爱,特别是母爱,对他来说,就是这样一份沉甸甸的卵石。①或神
下列关于代理服务器功能的描述中,(64)是正确的。
(1)Itiseasytoforgetthateventhemosttrivialcommercialtransactionsrelyonsmallactsoftrust.Lawsencouragegoodbeh
CanthePCIndustryResurrectItself?[A]InternetDataCenter’s(IDC)recentreportstatedthatPCshipmentsdeclined13.9%lastq
最新回复
(
0
)