已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则

admin2014-01-26  36

问题 已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)严格单调减少,且f(1)=f’(1)=1,则

选项 A、在(1-δ,1)和(1,1+δ)内均有f(x)<x.
B、在(1-δ,1)和(1,1+δ)内均有f(x)>x.
C、在(1-δ,1)内,(x)<x.在(1,1+δ)内,f(x)>x.
D、在(1-δ,1)内f(x)>x,在(1,1+δ)内,.f(x)<x。   

答案A

解析 [分析]  本题相当于证明不等式f(x)<x(或f(x)>x),可考虑采用辅助函数F(x)=f(x)-x,再根据其导数的性质进行判断即可.
    [详解]  令F(x)=f(x)-x,则有F’(x)=f’(x)-1=f’(x)-f’(1),由于f’(x)严格单调减少,因此当x∈(1-δ,1)时,F’(x)>0;当x∈(1,1+δ)时,F’(x)<0;且在x=1处F’(1)=0.可见F(x)在x=1处取极大值,即在(1-δ,1)和(1,1+δ)内均有F(x)<F(1)=0,也即f(x)<x.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/Lh34777K
0

最新回复(0)