首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1)|A |=0; (2)α+β,α-β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
设α,β是三维单位正交列向量,令A=αβT+βαT.证明: (1)|A |=0; (2)α+β,α-β是A的特征向量; (3)A相似于对角阵,并写出该对角阵.
admin
2016-01-25
54
问题
设α,β是三维单位正交列向量,令A=αβ
T
+βα
T
.证明:
(1)|A |=0;
(2)α+β,α-β是A的特征向量;
(3)A相似于对角阵,并写出该对角阵.
选项
答案
(1)A为三阶矩阵, r(A)=r(αβ
T
+βα
T
)≤r(αβ
T
)+r(βα
T
)≤r(α)+r(β)≤2<3, 故|A|=0. (2)因α,β为三维单位正交向量,故 α
T
α=1,β
T
β=1,αβ
T
=βα
T
=0. 当然α,β线性无关,又α,β为单位向量,α+β≠0,故 A(α+β)=(αβ
T
+βα
T
)(α+β)=αβ
T
α+αβ
T
β+βα
T
α+βα
T
β =α.0+α.1+β.1+β.0=α+β 即α+β为A的对应于特征值λ
1
=1的特征向量.同法可求 A(α-β)=(αβ
T
+βα
T
)(α-β)=αβ
T
α-αβ
T
β+βα
T
α-βα
T
β =α.0-α.1+β.1÷β.0=-(α-β), 故α-β为A的对应于特征值λ
2
=-1的特征向量. 设另一特征值为λ
3
,由|A|=0得到|A|=λ
1
λ
2
λ
3
=0,故λ
3
=0. (3)因A有3个不同特征值,故A~A=diag(0,1,一1),即其相似对角矩阵为 A=diag(0,1,一1)(diag为对角矩阵的英文简写).
解析
(1)利用r(B+C)≤r(B)+r(C),r(BC)≤r(B),r(C),证明r(A)<3;
(2)利用特征向量的定义,即利用A(α+β)=k(α+β),A(α-β)=C(α-β)证之;
(3)证明A有3个不同的特征值即可.
转载请注明原文地址:https://kaotiyun.com/show/JdU4777K
0
考研数学三
相关试题推荐
习近平在《在纪念中国人民抗日战争暨世界反法西斯战争胜利75周年座谈会上的讲话》中指出:“中国人民抗日战争胜利是中国共产党发挥中流砥柱作用的伟大胜利。”中国共产党在抗日战争中所发挥的中流砥柱作用,体现在中国共产党
新时代我国经济发展的基本特征,是由高速增长阶段转向高质量发展阶段,正处在转变发展方式、优化经济结构、转换增长动力的攻关期。因此,当前和今后一个时期确定发展思路、制定经济政策、实施宏观调控的根本要求是
五四运动是中国近代史上一个划时代的事件,在近代以来中华民族追求民族独立和发展进步的历史进程中具有里程碑的意义。下列关于五四运动的说法,正确的是
现代化经济体系,是由社会经济活动各个环节、各个层面、各个领域的相互关系和内在联系构成的有机整体。在现代化经济体系中,我们要建设
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
计算下列定积分:
假设随机变量U在区间[-2,2]上服从均匀分布,随机变量试求:(I)X和Y的联合概率分布;(Ⅱ)D(X+Y).
设f(x)为连续函数,且F(x)则f’(x)等于().
随机试题
A.细动脉壁玻璃样变性B.细动脉壁纤维素样坏死C.小动脉内膜纤维化D.小血管内纤维素样血栓形成(2010年第138题)慢性排斥反应的基本病变是
患儿,11个月。腹腔感染后形成肠瘘,在治疗过程中为增加机体营养,提高抵抗力,使胃肠道休息,采用哪项最为适宜
提出“止血、消瘀、宁血、补血”治血四法的医著是()
法院受理甲出版社、乙报社著作权纠纷案,判决乙赔偿甲10万元,并登报赔礼道歉。判决生效后,乙交付10万元,但未按期赔礼道歉,甲申请强制执行。执行中,甲、乙自行达成口头协议,约定乙免于赔礼道歉,但另付甲1万元。关于法院的做法,下列哪一选项是正确的?(2010年
某项目厂区占地面积为60000m2,其中,构筑物占地面积3600m2,道路和广场占地面积22800m2,建筑物占地面积12000m2,绿化面积18000m2,露天堆场面积3600m2,经计算,该项目的建筑系数为()。
下列有关重大错报风险的说法中,错误的是()。(2019年)
以下关于主刑制度的理解,正确的是()。
甲表示将赠与乙一台佳能相机,乙欣然表示接受。几日后,甲告诉乙,他不想将相机赠给乙,因为该相机已经赠给丙。则()。
在网络协议的各层中相邻层之间的联系是【 】的关系。
叙述中错误的是()。
最新回复
(
0
)