设(X,Y)的概率密度为f(x,y)=2e-(x+y),0<x<y<+∞,Z=X+Y. 求Cov(X,Z).

admin2023-01-04  12

问题 设(X,Y)的概率密度为f(x,y)=2e-(x+y),0<x<y<+∞,Z=X+Y.
求Cov(X,Z).

选项

答案先求Z的概率密度fZ(z).用卷积公式, fZ(z)=∫-∞+∞f(x,z-x)dx,x>0,z-x>x, 即x>0,z>2x,如图3-3所示. [*] 当z<0时,fZ(z)=0. 当z≥0时, fZ(z)=∫0z/22e-(x+z-x)dx=2e-z0z/2dx=ze-z, 即fZ(z)=[*] Cov(X,Z)=E(XZ)-EX·EZ=E[X(X+Y)]-EX·EZ =E(X2)+E(XY)-EX·EZ. EX=∫-∞+∞xfX(x)dx=∫0+∞x·2e-2xdx [*] EZ=∫0+∞zfZ(z)dz=∫0+∞z2e-zdz=Γ(3)=2, E(X2)=∫0+∞x2·2e-2xdx=1/2, E(XY)=∫-∞+∞-∞+∞xyf(x,y)dxdy=∫0+∞dy∫0yxy·2e-(x+y)dx =∫0+∞ye-ydy∫0yx·2e-xdx=1, 故 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/JigD777K
0

相关试题推荐
最新回复(0)