首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2.…的最小值记为Bn,dn=An-Bn. 证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或2,且有无穷多项为1.
已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2.…的最小值记为Bn,dn=An-Bn. 证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或2,且有无穷多项为1.
admin
2019-06-01
63
问题
已知{a
n
}是由非负整数组成的无穷数列,该数列前n项的最大值记为A
n
,第n项之后各项a
n+1
,a
n+2
.…的最小值记为B
n
,d
n
=A
n
-B
n
.
证明:若a
1
=2,d
n
=1(n=1,2,3,…),则{a
n
}的项只能是1或2,且有无穷多项为1.
选项
答案
因为a
1
=2,d
1
=1,所以A
1
=a
1
=2,B
1
=A
1
-d
1
=1.故对任意n≥1,a
n
≥B
1
=1. 假设数列{a
n
}(n≥2)中存在大于2的项.设m为满足a
m
>2的最小正整数,则m≥2,并且对任意1≤k<m,a
k
≤2.又因为a
1
=2,所以A
m-1
=2,且A
m
=a
m
>2.于是,B
m
=A
m
-d
m
>2—1=1,B
m-1
=min{a
m
,B
m
)≥2.故d
m-1
=A
m-1
-B
m-1
≤2—2=0,与d
m-1
=1矛盾.所以对于任意n≥1,有a
n
≤2,即非负整数列{a
n
}的各项只能为1或2.因为对任意n≥1,a
n
≤2-a
1
,所以A
n
=2.故B
n
=A
n
-d
n
=2—1=1.因此对于任意正整数n,存在m满足m>n,且a
m
=1,即数列{a
n
}有无穷多项为1.
解析
转载请注明原文地址:https://kaotiyun.com/show/K0Fq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
根据《义务教育英语课程标准(2011年版)》,语言教学的内容包括______和______两个方面。
若一次函数y=kx+b,当x的值减小1,y的值就减小2,则当x的值增加2时,y的值()。
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米,若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?(参考数据:tan40°=0.84,sin40°=0.64,cos40°=)
如图,菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF=______。
扇形的弧长为2π,面积为6π,那么这个扇形的半径为()。
某中学九年级开展数学实践活动,测量市电视塔的高度,由于该塔还没有完成内外装修而周围障碍物密集,于是在它不远处开阔地带的C处测得电视塔顶点A的仰角为45°,然后向电视塔的方向前进120米到达D处,在D处测得顶点A的仰角为60°,如图所示,求该电视塔的高度约为
如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D’,C’的位置.若∠AMD’=36°,则∠NFD’等于().
如右图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB周长等于______.(结果保留根号及π).
设函数f(x)在[a,b]上连续,则曲线y=f(x)与直线x=a,x=b,y=0所围成的平面图形的面积为().
用一个比l大的整数乘以1997,使其结果出现5个连续的9,这个数最小为
随机试题
__________早年游历于江、淮间,后归杭州,结庐西湖孤山,隐居二十年,不仕不娶,植梅养鹤,时称“__________”。林逋以江湖散人之诗装点山林,用细碎小巧的笔法写清苦幽静的隐居生活。他虽然也模仿贾岛诗的字斟句酌,但诗中却流露出其性情的孤淡清逸。代
要制备电镜的半薄切片,可用的组织固定方法是
患者李某,女性,17岁。半年来因学习紧张,思想压力较大,晚上经常难以入睡,或多梦易醒,伴心悸健忘,四肢倦怠,饮食乏味,面色少华,舌质淡,脉细弱。其患者辨证为不寐
为提高微细强度差异的可察觉性可采用
关于战时自伤罪,下列哪些选项是错误的?()
(2008年考试真题)企业出售固定资产应交的营业税,应列入利润表的“营业税金及附加”项目。()
()是实施“西电东送”的国家重大工程,是当今世界在建规模最大、技术难度最高的水电工程。
求极限
TheAmericanRevolutionwasacitizen’srevolution.Ordinarymentookalargepartinit.OneofthemwasPaulRevere,asilver
Oneofthegreatestconcernsparentshavewhenfacinganinternationalmoveis,"Whatschoolwillbe【C1】______tomychild?Will
最新回复
(
0
)