设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明: (1)存在,使得f(η)=η; (2)对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.

admin2015-07-24  27

问题 设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:
(1)存在,使得f(η)=η;
(2)对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.

选项

答案(1)令φ(x)=f(x)一x,φ(x)在[0,1]上连续,[*]>0,φ(1)=一1<0,由零点定理,存在η∈[*],使得φ(η)=0,即f(η)=η. (2)设F(x)=e-kx(x),显然F(x)在[0,η]上连续,在(0,η)内可导,且F(0)=F(η)=0,由罗尔定理,存在ξ∈(0,η),使得F’(ξ)=0,整理得f’(ξ)一k[f(ξ)一ξ]=1.

解析
转载请注明原文地址:https://kaotiyun.com/show/K9w4777K
0

最新回复(0)