设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).

admin2021-10-18  32

问题 设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)-f(ξ)=f(2)-2f(1).

选项

答案令φ(x)=[f(x)+f(2)-2f(1)]/x,则φ(x)在[1,2]上连续,在(1,2)内可导,且φ(1)=φ(2)=f(2)-f(1),由罗尔定理,存在ξ∈(1,2),使得φ’(ξ)=0,而φ’(x)=[xf’(x)-f(x)-f(2)+2f(1)]/x2,故ξf’(ξ)-f(ξ)=f(2)-2f(1).

解析
转载请注明原文地址:https://kaotiyun.com/show/BAy4777K
0

最新回复(0)