首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,f’(x)与xk是同阶无穷小,则k等于( )
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,且当x→0时,f’(x)与xk是同阶无穷小,则k等于( )
admin
2018-07-01
74
问题
(1996年)设f(x)有连续导数,f(0)=0,f’(0)≠0,
且当x→0时,f’(x)与x
k
是同阶无穷小,则k等于( )
选项
A、1.
B、2.
C、3.
D、4.
答案
C
解析
解1
由于
而上式右端极限存在且为非零常数,则k=3,所以应选(C).
解2 由原题知当x→0时,F’(x)与x
k
为同阶无穷小,换句话说,当x→0时,F’(x)是x的k阶无穷小,本题要决定k,即要决定当x→0时,F’(x)是x的几阶无穷小,如果能决定F(x)是x的几阶无穷小,降一阶就应是F’(x)的阶数.下面来决定F(x)是x的几阶无穷小.由于
f(t)=f(0)+f’(0)t+o(t)=f’(0)t+o(t)
由于上式中第二项o(t)是高阶:无穷小,略去它不影响F(x)的阶数,则x→0时,
与F(x)的阶数相同,而
显然它是x的四阶无穷小,则x→0时F(x)是x的四阶无穷小,F’(x)应是x的三阶无穷小,故应选(C).
△解3 与解2前面的分析一样,本题只要能确定F(x)是x的几阶无穷小,问题就得到解决.在F(x)=
的表达式中有一个一般函数f(t),这样一个一般的f(x)它都能决定F(x)的阶数,那么取一个具体的f(t),比如取f(t)=t,当然同样也可以决定结果.将f(t)=t代入
得
显然它是x的四阶无穷小,从而F’(x)是x的三阶无穷小,所以应选(C).
转载请注明原文地址:https://kaotiyun.com/show/KCg4777K
0
考研数学一
相关试题推荐
设又函数f(x)在点x=0处可导,求F(x)=f[φ(x)]的导数.
设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[-1,1,4,-1]T,α3=[5,-1,-8,9]T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
求曲线的一条切线l,使该曲线与切线z及直线x=0,x=2所围成图形的面积最小.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0,写出f(x)的带拉格朗日余项的一阶麦克劳林公式;
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有;
设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则=____________
设函数f(x)在(一∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记.证明曲线积分I与路径L无关;
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
随机试题
人力资源管理的人际关系阶段出现在()
下列哪一项属于酸蚀过程中的错误操作( )。
欢欢和乐乐是一对继兄弟,二人的继父母因故身亡后,二人一直相依为命,相互扶持,后来欢欢因车祸去世,对于欢欢的财产,乐乐因()享有继承权。
刘某为甲期货公司从业人员,在得知乙期货公司给居间人较高的返佣后,私下将新开发的客户介绍给乙期货公司。[2012年11月真题]根据上述事实,请回答以下问题。刘某可能受到的纪律惩戒有()。
某房地产开发企业以出让方式取得一宗土地的开发经营权,土地出让年限为50年。根据土地使用权出让合同及规划设计条件,可建设8幢17层的住宅。项目采用一次性开发的方式,预计建设期为2年,第一年开始预售。在营销策划过程中,确定营销活动由房地产开发企业自行组织,采取
读“城市规模的费用/效益曲线”,完成9~10题。该城市人口控制的合理范围是()。
寄生:是指一种生物长期或暂时生活在另一种生物的体内或体表,并从后者那里吸取营养物质来维持其生活的一种种间关系。根据以上定义,下列属于寄生关系的是:
人才链:指同一种才能的人才连续出现的现象。人才链分为两种,一种叫师徒型人才链,一种叫血缘型(又称家族型)人才链。下列属于人才链的是()。
新中国成立后的最初三年,在着重完成民主革命的遗留任务的同时,社会主义革命的任务实际上也已经开始实行了。这主要表现在
求∫(arccosx)2dx.
最新回复
(
0
)