首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求 a,b的值;
已知A,B为三阶非零矩阵,且A=。β1=(0,1,一1)T,β2=(0,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且AX=β3有解。求 a,b的值;
admin
2018-02-07
76
问题
已知A,B为三阶非零矩阵,且A=
。β
1
=(0,1,一1)
T
,β
2
=(0,2,1)
T
,β
3
=(6,1,0)
T
是齐次线性方程组Bx=0的三个解向量,且AX=β
3
有解。求
a,b的值;
选项
答案
由B≠O,且β
1
,β
2
,β
3
是齐次线性方程组Bx=0的三个解向量可知,向量组β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*]=0, 解得a=3b。 由AX=β
3
有解可知,线性方程组Ax=β
3
,的系数矩阵的秩等于增广矩阵的秩,对增广矩阵作初等行变换得 (A,β
3
)=[*], 所以b=5,a=3b=15。
解析
转载请注明原文地址:https://kaotiyun.com/show/KHk4777K
0
考研数学二
相关试题推荐
某厂家生产的一种产品同时在两个市场销售,售价分别为P1和P2;销售量分别为Q1和Q2;需求函数分别为Q1=24-0.2P1,Q2=10-0.05P2总成本函数为C=35+40(Q1+Q2)试问:厂家如何确定两个市场的产品售价,使其获得的总利润最
设f(x+y,x-y)=ex2+y2(x2-y2),求函数f(x,y)和的值.
微生物培养的增殖速率和它们现有的量及现有的营养物质的乘积成正比(比例系数为k),营养物质减少的速率和微生物的现有量成正比(比例系数为k1),实验开始时,容器内有x。g微生物和y。g营养物质,试求微生物的量及营养物质的量随时间的变化规律,并问何时微生物停止增
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ζ,使f"’(ζ)=3.
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
宣告失踪的法律后果是()。
阅读《诗经.氓》第五、六章,然后回答下列小题。三岁为妇,靡室劳矣。夙兴夜寐,靡有朝矣。言既遂矣,至于暴矣。兄弟不知,咥其笑矣。静言思之,躬自悼矣。及尔偕老,老使我怨。淇则有岸,隰则有泮。总角之宴,言笑晏晏。信誓旦旦,不思其反。反是不思,亦已焉战!本
男,30岁。上腹部周期性、节律性疼痛3年,再发2周。为空腹及夜间痛,进食后缓解。既往体健。查体:心肺无异常。腹软,上腹部有压痛,未触及包块,肝脾肋下未触及,肠鸣音正常。腹部B超未见异常。对明确诊断最有价值的检查是()
特殊情况下,施工人员必须进入一氧化碳浓度达到100mg/m3的隧道工作面时,其工作时间不得超过()。
阻燃电缆的()越高,它的阻燃性越好。
给定资料1.早在2009年,微博就已经在网民中逐渐扩散开来。所谓微博,百度百科上是这样解释的:“微博,即微博客(MieroBlog)的简称,是一个基于用户关系的信息分享、传播以及获取平台,用户以140字左右的文字更新信息,并实现即时分享。最早也是
首次区分公罪与私罪的封建成文法典是( )。
用来导入已定义好的类或包的语句是()。
THEESCALATORAnAmerican,CharlesD.Seeberger,inventedmovingstairstotransportpeopleinthe1890s.He(26)______th
ClinicalTrials1Manyclinicaltrialsaredonetoseeifanewdrugordeviceissafeandeffectiveforpeopletouse.Sometime
最新回复
(
0
)