首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是xx-a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x-a的,n-1阶无穷小量.
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是xx-a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x-a的,n-1阶无穷小量.
admin
2016-10-20
53
问题
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是xx-a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x-a的,n-1阶无穷小量.
选项
答案
由题设f(x)在x=a处n阶可导且[*]知,把f(x)在x=a的带皮亚诺余项的n阶泰勒公式代入即得 [*] 从而f(a)=f’(a)=f’’(a)=…=f
(n-1)
(a)=0,f
(n)
(a)=n!A≠0. 设g(x)=f’(x),由题设知g(x)在x=a处,n-1阶可导,且 g(a)=f’(a)=0,g’(a)=f’’(a)=0,…,g
(n-2)
(a)=f
(n-1)
(a)=0, g
(n-1)
(a)=f
(n)
(a)=n!A≠0. 由此可得f’(x)=g(x)在x=a处带皮亚诺余项的n-1阶泰勒公式为 [*] 故f’(x)当x→a时是x-a的n-1阶无穷小量.
解析
转载请注明原文地址:https://kaotiyun.com/show/KMT4777K
0
考研数学三
相关试题推荐
[*]
1/2
在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有2个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2)≤T(3)≤(4)为4个温控器显示的按递增顺序排列温度值,则事件E等于().
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
证明下列曲线积分在整个xOy平面内与路径无关,并计算积分值:
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
用向量法证明:三角形两边中点的连线平行于第三边,且长度等于第三边长度的一半.
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
随机试题
患者,男,56岁。左足肿痛2年。为了明确诊断最需要做哪项检查
下列可提示COHb浓度超过50%的结果是
治疗风疹的代表方剂是()治疗破伤风的代表方剂是()
女性,59岁,间断咳嗽、咳痰5年,加重伴咯血2个月。患者表现为低热、乏力、食欲减退、咳白色黏痰、体重逐渐下降。根据患者表现,疑患下列哪种疾病
本案的被告是( )。假设本案中出现下列情形,则不符合法律规定的是( )。
工程变更单一定包括的内容有( )。
只有心里健康的教师,才有可能培养出心理健康的学生。()
【2014年威海市真题】根据埃里克森的理论,2~3岁的发展任务是培养()。
E市开展一项公共政策的民意调查,随机抽取一千名市民回答有关问题。一个月后,再次随机抽取了一千名市民回答相同的问题,但问题的顺序设置与上次不同。结果发现,两次市民样本对许多问题得出了不同的回答。这证明同一组问题,因为其问题顺序的改变,有时就会得到不一样的回答
根据《食品安全法》规定,国务院决定设立国务院食品安全委员会。2010年2月9日,国务院食品安全委员会召开第一次全体会议。中共中央政治局常委、国务院副总理、国务院食品安全委员会主任()在会上发表重要讲话。
最新回复
(
0
)