设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是xx-a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x-a的,n-1阶无穷小量.

admin2016-10-20  59

问题 设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是xx-a的n阶无穷小量.求证:f(x)的导函数f’(x)当x→a时是x-a的,n-1阶无穷小量.

选项

答案由题设f(x)在x=a处n阶可导且[*]知,把f(x)在x=a的带皮亚诺余项的n阶泰勒公式代入即得 [*] 从而f(a)=f’(a)=f’’(a)=…=f(n-1)(a)=0,f(n)(a)=n!A≠0. 设g(x)=f’(x),由题设知g(x)在x=a处,n-1阶可导,且 g(a)=f’(a)=0,g’(a)=f’’(a)=0,…,g(n-2)(a)=f(n-1)(a)=0, g(n-1)(a)=f(n)(a)=n!A≠0. 由此可得f’(x)=g(x)在x=a处带皮亚诺余项的n-1阶泰勒公式为 [*] 故f’(x)当x→a时是x-a的n-1阶无穷小量.

解析
转载请注明原文地址:https://kaotiyun.com/show/KMT4777K
0

随机试题
最新回复(0)