首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
admin
2017-10-12
39
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题
(1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解;
(3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
以上命题中正确的是( )
选项
A、(1)(2).
B、(1)(4).
C、(3)(4).
D、(2)(3).
答案
A
解析
若A
n
α=0,则A
+1
α=A(A
n
α)=A0=0,即若α是(Ⅰ)的解,则α必是(Ⅱ)的解,可见命题(1)正确.
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,A
1
α,A
2
α,…,A
n
α,一方面有:
若kα+k
1
A
1
α+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边,并把A
n+1
α=0,A
n+2
α=0…代入,得kA
n
α=0.由A
n
α≠0知,必有k=0.类似地用A
n-1
左乘可得k
1
=0.因此,α,A
1
α,A
2
α,…,A
n
α线性无关.
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾.故A
n+1
α=0时,必有A
n
α=0,即(Ⅱ)的解必是(Ⅰ)的解.因此命题(2)正确.
所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/KSH4777K
0
考研数学三
相关试题推荐
若曲线与x轴y轴及直线所围图形的面积被曲线y=asinx,y=bsinx((a>b>0)三等分,求a与b的值.
设某商品的需求函数为Q=40—2P(P为商品的价格),则该商品的边际收益为__________.
设p(x)=a+bx+cx2+dx3.当x→0时,若p(x)-tanx是比x3高阶的无穷小,则下列选项中错误的是
验证下列函数都是所给微分方程的解,其中哪些是通解?(1)x2y〞-2xyˊ+2y=0,y=x(C1+C2x);(2)y〞=2yˊ+2y=ex,y=ex(C1cosx+C2sinx+1);(3)y〞+4y=0,y=C1sin2x+C2sinxcosx
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,(I)求a的值;(Ⅱ)求齐次方程组(i)的解;(Ⅲ)求齐次方程(ii)的解.
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2),且P{X=x2|=,P{y=y1|X=x2}=,p{X=x1|Y=y1}=,试求:(I)二维随机变量(X,Y)的联合概率分布;(II)条件概率P{Y=yj|X=x1},j=1,2.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e—x一3e2x为特解,求该微分方程.
微分方程y"一y’一6y=(x+1)e—2x的特解形式为().
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
随机试题
为什么深而慢的呼吸气体交换效率高于浅而快的呼吸?
A.肝脂肪酶B.辅脂酶C.脂蛋白脂肪酶D.激素敏感性脂肪酶水解VLDL中甘油三酯的酶是
心气虚、心阳虚、心血虚、心阴虚四证的共同临床表现是
肝硬化门脉高压症最危险的并发症是
甲、乙、丙按不同的比例共有一套房屋,约定轮流使用。在甲居住期间,房屋廊檐脱落砸伤行人丁。下列选项正确的是()。
设立拍卖企业应符合的条件包括:()
()主要是说明建设项目实施的根据,建议项目性质、规模和质量要求,执行的技术标准和规范,设备材料和物资供应条件等。
有色玻璃又名吸热玻璃,能够吸收太阳可见光,减弱太阳光的强度。下列关于吸热玻璃的说法,错误的是()。
Paul:DoyouhavetohavethatTVonquitesoloud?Carol:______.Isitbotheringyou?Paul:Yes,I’mtryingtosleep.
Thereisadifferencebetweenscienceandtechnology.Scienceisamethodofansweringtheoretical(31);technologyisamethod
最新回复
(
0
)