首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题 (1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解; (3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
admin
2017-10-12
61
问题
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)A
n
x=0和(Ⅱ)A
n+1
x=0,现有四个命题
(1)(Ⅰ)的解必是(Ⅱ)的解; (2)(Ⅱ)的解必是(Ⅰ)的解;
(3)(Ⅰ)的解不是(Ⅱ)的解; (4)(Ⅱ)的解不是(Ⅰ)的解.
以上命题中正确的是( )
选项
A、(1)(2).
B、(1)(4).
C、(3)(4).
D、(2)(3).
答案
A
解析
若A
n
α=0,则A
+1
α=A(A
n
α)=A0=0,即若α是(Ⅰ)的解,则α必是(Ⅱ)的解,可见命题(1)正确.
如果A
n+1
α=0,而A
n
α≠0,那么对于向量组α,A
1
α,A
2
α,…,A
n
α,一方面有:
若kα+k
1
A
1
α+k
2
A
2
α+…+k
n
A
n
α=0,用A
n
左乘上式的两边,并把A
n+1
α=0,A
n+2
α=0…代入,得kA
n
α=0.由A
n
α≠0知,必有k=0.类似地用A
n-1
左乘可得k
1
=0.因此,α,A
1
α,A
2
α,…,A
n
α线性无关.
但另一方面,这是n+1个n维向量,它们必然线性相关,两者矛盾.故A
n+1
α=0时,必有A
n
α=0,即(Ⅱ)的解必是(Ⅰ)的解.因此命题(2)正确.
所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/KSH4777K
0
考研数学三
相关试题推荐
利用幂级数的和函数的性质求下列级数在各自收敛域上的和函数:
确定下列函数中C1,C2的值,使得函数满足所给定的条件:(1)y=C1cosx+C2sinx,y|x=0=1,yˊ|x=0=3;(2)y=(C1+C2x)e2x,y|x=0=0,yˊ|x=0=1.
设f(x)在(-∞,+∞)上连续,且证明:(1)若f(x)为偶函数,则F(x)也是偶函数;(2)若f(x)是单调减少函数,则F(x)也是单调减少函数.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设X的概率密度为(Ⅰ)求a,b的值;(Ⅱ)求随机变量X的分布函数;(Ⅲ)求Y=X3的密度函数.
设则B等于().
设随机变量X取非负整数值的概率为P{X=n}=an,则EX=___________.
设总体X的概率分布为,其中参数θ未知且.从总体X中抽取一个容量为8的简单随机样本,其8个样本值分别是1,0,1,一1,1,1,2,1.试求:(I)θ的矩估计值;(Ⅱ)θ的最大似然估计值;(Ⅲ)经验分布函数F8(x).
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
随机试题
某患者因从马车上掉下,头后枕部着地,颈部活动受限,下颈椎压痛明显,四肢弛缓性瘫,躯干感觉平面在胸骨柄以下,痛、温觉消失,不能自行排尿,诊断首先考虑
下列哪种给药途径,药物的药效出现最快()。
A.续断B.紫河车C.菟丝子D.何首乌E.益智仁温肾补精,益气养血的中药是
某种地质作用造成了牛轭湖相沉积,则该种地质作用为()。
设备监理项目上的冲突分为()。
当设计无要求时,女儿墙与屋顶交接处泛水高度最小值是()mm。
下列属于电气防爆基本措施的是()。
以是否以自己的行为行使投诉权为依据,旅游投诉可以分为()。
根据教学的需求,组织学生对实际事物进行观察、研究,以获得新知识,巩固、验证已学知识的教学方法被称为()。
毛泽东思想和中国特色社会主义理论体系是马克思主义中国化的两大理论成果。贯穿这两大理论成果始终,并体现在两大成果各个基本观点中的世界观和方法论的基础是
最新回复
(
0
)