首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)在(a,+∞)可导且f’(x)=A,求证:若A>0,则f(x)=+∞;若A<0,则f(x)=一∞. (Ⅱ)设g(x)在[a,+∞)连续,且∫a+∞g(x)dx收敛,又g(x)=l,求证l=0.
(Ⅰ)设f(x)在(a,+∞)可导且f’(x)=A,求证:若A>0,则f(x)=+∞;若A<0,则f(x)=一∞. (Ⅱ)设g(x)在[a,+∞)连续,且∫a+∞g(x)dx收敛,又g(x)=l,求证l=0.
admin
2020-01-15
31
问题
(Ⅰ)设f(x)在(a,+∞)可导且
f’(x)=A,求证:若A>0,则
f(x)=+∞;若A<0,则
f(x)=一∞.
(Ⅱ)设g(x)在[a,+∞)连续,且∫
a
+∞
g(x)dx收敛,又
g(x)=l,求证l=0.
选项
答案
(Ⅰ)联系f(x)与f’(x)的是拉格朗日中值定理,取x
0
∈(a,+∞),[*]x>x
0
。有 f(x)=f(x
0
)+f’(ξ)(x一x
0
)(x
0
<ξ<x). (*) 下面估计f’(ξ):由[*]=A,设A>0,由极限的不等式性质→[*]X>a,当x>X时f’(x)>[*].现取定x
0
>X,当x>x
0
时,由于ξ>x
0
>X,有f’(ξ)>[*],于是由(*)式得 [*] (Ⅱ)记f(x)=∫
a
x
g(t)dt,则f(x)在[a,+∞)内可导且f’(x)=g(x),[*].若x≠0,则l>0或<0,由题(Ⅰ)→[*]=∫
a
+∞
g(t)dt=+∞(或一∞),与∫
a
+∞
g(t)dt收敛矛盾.因此l=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/KXA4777K
0
考研数学二
相关试题推荐
设平面区域D由直线y=x,圆x2+y2=2y及y轴所围成,则二重积分_____________.
求微分方程x2y’+xy=y2满足初始条件的特解.
设b1=a1,b2=a1+a2,…,br=a1+a2+…+ar,且向量组a1,a2,…,ar线性无关,证明向量组b1,b2,…,r线性无关.
设A~B,求可逆矩阵P,使得p-1AP=B.
设函数f(x)和g(x)和[a,b]上存在二阶导数,并且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=O,试证(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ε,使
设f(x,y)具有二阶连续偏导数,证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值
作自变量与因变量变换:u=χ+y,v=χ-y,ω=χy-z,变换方程=0为ω关于u,v的偏微分方程,其中z对χ,y有连续的二阶偏导数.
问a、b为何值时,线性方程组无解、有唯一解、有无穷多解?并求有无穷多解时的通解.
设f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的充分必要条件是()
随机试题
奥运会的格言是“更快、更高、更强”。请结合这一格言,自拟题目。要求:A.自定立意,可写成记叙文、议论文。B.不少于800字。C.字迹工整,卷面整洁。
小儿腹泻脱水,在脱水纠正后出现抽搐,最常见的原因是
印制规范包括()要求。
根据《会计人员继续教育暂行规定》,具有初级会计专业技术资格的会计人员每年接受继续教育的培训时间最少应为()。
下列各项中,属于企业所有者权益组成部分的有()。
Whathealthproblemsdomanyelderlyhave?MaggieKuhntravelsacrosstheUnitedStatesinorderto______elders.
A、 B、 C、 D、 D
A、Yellow.B、Green.C、White.A本题询问丽莉的衣服是什么颜色的。女士说:TheblueoneisLucy’s,andtheyellowoneisLily’s.可知答案为[A]Yellow。
MESOLITHICCOMPLEXITYINSCANDINAVIA(1)TheEuropeanMesolithic(roughlytheperiodfrom8000B.C.to2700B.C.)testifiest
A、Hefounditmoreprofitable.B、Hewantedtobehisownboss.C、Hedidn’twanttostartfromscratch.D、Hedidn’twanttobein
最新回复
(
0
)